

IC at IC: IceCube can probe the intrinsic charm of the proton Ranjan Laha

Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Stanford University SLAC National Accelerator Laboratory

in collaboration with Stanley J Brodsky

arXiv 1607.08240

Contents

• Atmospheric neutrinos and IceCube

• Prompt atmospheric neutrinos

• Intrinsic charm contribution to prompt atmospheric neutrinos

Atmospheric neutrinos and IceCube

Neutrinos \equiv neutrinos + antineutrinos

Atmospheric neutrinos

IceCube neutrino telescope

Conventional atmospheric neutrinos

 Production of charmed hadrons in the atmosphere

> $CR + air \to D^{\pm}, D^{0}, \bar{D}^{0}, D_{s}^{\pm}, \Lambda_{c}^{\pm}, \dots$ charmed hadrons $\to \ell^{\pm}, \nu_{\ell}, \bar{\nu}_{\ell}, \dots$

 $\nu_e:\nu_\mu:\nu_\tau\approx 1:1:0.1\quad\text{and}\;\nu:\bar\nu=1:1$

"prompt" = the charmed hadrons decay faster compared to π/K Isotropic flux till 107 GeV

Prompt atmospheric neutrino flux shape ≈ cosmic ray flux shape

At high s, the interaction is very sensitive to the gluon distribution (x $\sim 10^{-8} - 10^{-4}$)

Flux predictions from pQCD

Various approaches in pQCD

Large uncertainty

Calculations by various groups in recent times: 1502.010776, 1507.01570, 1511.06346, 1607.00193, 1611.03815

The central values of various approaches largely agree

Present IceCube upper limits can constrain some of these approaches --- unique constraints on pQCD parameter space

Intrinsic charm contribution to the prompt atmospheric neutrinos

arXiv 1607.08240

Ranjan Laha

Intrinsic charm

- A rigorous prediction of QCD
- Non-perturbative component
- Flattish $d\sigma/dx_F$ observed at SELEX, ISR
- Dominates at high x_F

Brodsky, Hoyer, Peterson, and Sakai 1980

See talks in this meeting by Gardner, Signori, Ilten, Dulat, Hobbs, and Sato

$$\left| p \right\rangle = A \left| uud \right\rangle + B \left| uud c \overline{c} \right\rangle + \dots$$

Quantum fluctuation of the proton

Probability for the proton to contain an intrinsic charm and anti-charm quark is related to $|B|^2$

During an interaction, the u, d and c quark can combine to form a Λ_c

Brodsky etal., 1504.06287

There are a number of fixed-target experiments like SMOG at LHCb and AFTER@LHC which aim to confirm or constrain the intrinsic charm of the proton

The normalization constant B has to be deduced from experiments

Intrinsic charm contribution

• The measurement of prompt atmospheric neutrinos is a forward measurement \Rightarrow intrinsic charm can play an important role

 $x_F \approx E_c/E$

 E_c = outgoing charm quark energy

E = incident proton energy

- Intrinsic charm uses the incident proton energy more efficiently. It can play an important role since the cosmic rays have a steeply falling spectrum
- Nuclear dependence (~ A^{0.7}) is important since the atmospheric target is mostly nitrogen

Cascade equations for protons, charm hadron and leptons

- We assume the best-fit pQCD cross section and then use LEBC-MPS data to normalize the D cross sections
- ISR cross section by itself produces too large atmospheric prompt neutrino flux

Prompt atmospheric flux due to intrinsic charm

Depending on the normalization, the contribution due to intrinsic charm can be as large as that due to perturbative QCD.

The important charm hadrons that contribute towards this flux are $D^0, \bar{D}^0, D^{\pm}, D_s^{\pm}, \Lambda_c$

The neutrino flavor ratio is $\nu_e:\nu_\mu:\nu_\tau\approx 1:1:0.1$

This is an additional contribution to the prompt atmospheric flux

IceCube upper limits (near ERS w/G flux) are very close to the contribution due to intrinsic charm

Contribution to atmospheric $\nu_e + \bar{\nu}_e$ and $\nu_\mu + \bar{\nu}_\mu$

Conventional atmospheric $\nu_{\mu} + \bar{\nu}_{\mu}$ flux is higher 🙁 but the statistics are larger 🙂

Present IceCube upper limits on atmospheric prompt neutrinos already constrain models of $\ensuremath{\mathsf{pQCD}}$

Future limits on atmospheric prompt neutrinos will get stronger

Talk_IceCube_Antares.pdf

Ranjan Laha

Conclusions

- High x_F physics important for astroparticle experiments (see for e.g., 1601.03044, 1605.01409, 1701.08451)
- Prompt atmospheric neutrinos are an important signal for IceCube
- Intrinsic charm can have important contribution to the prompt atmospheric neutrinos
- IceCube can constrain the intrinsic charm of the proton

Puzzling questions about the high energy astrophysical universe

 $p + p \rightarrow \pi/K + \dots \rightarrow \nu/\bar{\nu}$

The key difference are the neutrinos

Neutrinos are inevitably produced in

cosmic ray interactions

Neutrinos as cosmic messengers

- + No deflection from source
- + Can escape from very dense sources
- + No interaction on the way from source to detector
- + Complementary to gamma-rays

- Large detectors required
- Very long time required to collect signal

No detection yet, only upper limits exist on prompt atmospheric neutrinos

Upper limits are at the upper end of present perturbative QCD predictions

Already constrains mechanisms which predict a higher prompt atmospheric fluxes

The lower and higher energy neutrino spectrum dominated by conventional atmospheric neutrinos and astrophysical neutrinos respectively

Limits on the prompt atmospheric neutrinos depend on astrophysical neutrino flux modeling

IceCube neutrino telescope

Ranjan Laha

Most energetic astrophysical neutrino event ever!!!

IceCube 1607.08006

Kistler & Laha 1605.08781

If ν_{μ} produces this track, the neutrino energy is ~ 10 PeV

If ν_{τ} produces this track, the neutrino energy is ~ 100 PeV

Muon Tracks

Caused by muons produced in CC interaction of $\nu_{\mu}/\overline{\nu}_{\mu}$

+ Long range implies larger effective volume

+ Better Angular resolution ~ 1°

Higher atmospheric neutrino
backgrounds

 dN_{μ}

 $= \frac{N_A \ \rho \ T \ A_{\det}}{\rho(\alpha + \beta E_{\mu})} \times \int_{E_{\mu}}^{\infty} dE_{\nu} \frac{d\Phi_{\nu}}{dE_{\nu}} \sigma_{\rm CC}(E_{\nu}) e^{-\frac{L}{\lambda}}$ Ranjan Laha

Cascades

Caused by CC interactions of ν_e/ν_τ and their antiparticles and NC interactions of neutrinos of all flavors

- + Calorimetric
- Lower atmospheric neutrino background
- Smaller effective volume
- Poor angular resolution ~ 50°

Atmospheric muon charge ratio and high x_F physics

Atmospheric muon charge ratio

Sensitive probe of cosmic ray physics and hadronic interactions

Plateau implies asymptotic kaon contribution \Rightarrow validity of Feynman scaling up to primary energies/ nucleon around 200 TeV

Associated production of ΛK^+ important; no analogue for K^- ; constrains the cross section in the high x_F region (difficult to probe via laboratory experiments) $G_{aisser 1111.6675}$

Interplay of high x_F physics and astroparticle experiments

IceCube data

Diffuse spectrum of neutrinos

- Time-independent
- Clear evidence of the astrophysical nature of these neutrinos
- None of them point to a specific source

Cosmic rays

Observed spectrum of cosmic rays

Spectrum of nuclei observed over many orders of magnitude in energy and flux

Observed via direct measurements (balloon/ space observatory) and air shower arrays

Tremendous amount of data to understand the acceleration mechanism

Knowledge of QCD needed to understand the interaction of cosmic rays with the atmosphere

Cosmic ray interactions in the atmosphere

Cosmic ray interaction in the atmosphere is a fixed target experiment

Detailed knowledge of QCD required to understand the rates of various interaction products

Sensitive to QCD parameter space which is difficult to access in the laboratory

For e.g., for $E_v \approx 8000 \text{ TeV}$, $\sqrt{s} \approx 20 \text{ TeV}$

High energy pp interactions sensitive to gluon density in the small x ($\approx 10^{-8} - 10^{-4}$) region

Due to the flattish $d\sigma/dx_F$, intrinsic charm uses the incoming proton energy quite efficiently \Rightarrow important since cosmic ray spectrum is falling

Ranjan Laha