Hadron structure from lattice QCD

Jeremy Green

NIC, DESY, Zeuthen

7th workshop of the APS Topical Group on Hadronic Physics February 1–3, 2017

- **1.** Neutron beta decay couplings g_A , g_T , g_S
- **2.** Sigma terms $\sigma_{\pi N}$, σ_s
- 3. Electromagnetic form factors
- 4. Proton charge radius
- 5. Strange form factors
- 6. PDFs and TMDs

... is a regularization of Euclidean-space QCD such that the path integral can be done fully non-perturbatively.

- Euclidean spacetime becomes a periodic hypercubic lattice, with spacing *a* and box size $L_s^3 \times L_t$.
- Path integral over fermion degrees of freedom is done analytically, for each gauge configuration. Solving the Dirac equation with a fixed source yields a source-to-all quark propagator.
- Path integral over gauge degrees of freedom is done numerically using Monte Carlo methods to generate an *ensemble* of *gauge configurations*.

The $a \rightarrow 0$ and $L_s, L_t \rightarrow \infty$ extrapolations need to be taken by using multiple ensembles.

Precision lattice QCD

Flavour Lattice Averaging Group (FLAG) reviews:

http://itpwiki.unibe.ch/flag ^{Continuun ettapolation} G. Colangelo et al., Eur. Phys. J. C 71, 1695 (2011)

chiral extrabolation -S. Aoki *et al.*, Eur. Phys. J. C **74**, 2890 (2014) S. Aoki *et al.*, 1607.00299 e.g., quark masses

renormalization ^Tunningo m_{ud} m_{*} RBC/UKOCD 14B[⊖] [10] 3.31(4)(4)90.3(0.9)(1.0)Ρ d RBC/UKQCD 12[⊕] [31] Α * * d 3.37(9)(7)(1)(2)92.3(1.9)(0.9)(0.4)(0.8) PACS-CS 12* [143]Α * * b 3.12(24)(8)83.60(0.58)(2.23) \mathbf{C} [44] 3.31(7)(20)(17)94.2(1.4)(3.2)(4.7) Laiho 11 _ BMW 10A, 10B⁺ [7.8] А * * * 3.469(47)(48)95.5(1.1)(1.5)c* * [95] А Ь 2.78(27)86.7(2.3)PACS-CS 10 MILC 10A [13] \mathbf{C} * 3.19(4)(5)(16) $HPQCD 10^*$ * 92.2(1.3)[9] А 3.39(6)RBC/UKOCD 10A [144] Α 3.59(13)(14)(8)96.2(1.6)(0.2)(2.1) * a Blum 10^{\dagger} [103]Α * 3.44(12)(22)97.6(2.9)(5.5)PACS-CS 09 [94] Α * * 2.97(28)(3)92.75(58)(95) b * HPQCD 09A[⊕] [18] Α _ _ 3.40(7)92.4(1.5) \mathbf{C} * 3.25(1)(7)(16)(0)MILC 09A **[6**] 89.0(0.2)(1.6)(4.5)(0.1) MILC 09 А * [89] 3.2(0)(1)(2)(0)88(0)(3)(4)(0)_ PACS-CS 08 93 Α * 2.527(47)72.72(78)RBC/UKOCD 08 [145]Α 3.72(16)(33)(18)107.3(4.4)(9.7)(4.9) CP-PACS/ [146] $3.55(19)(^{+56}_{-20})$ $90.1(4.3)(^{+16.7}_{-4.3})$ Α JLQCD 07 $3.2(0)(2)(2)(0)^{\ddagger}$ HPQCD 05 [147] A $87(0)(4)(4)(0)^{\ddagger}$ MILC 04. HPOCD/ [107, 148]А 2.8(0)(1)(3)(0)76(0)(3)(7)(0)MILC/UKOCD 04

Precision lattice QCD

Flavour Lattice Averaging Group (FLAG) reviews:

http://itpwiki.unibe.ch/flag G. Colangelo *et al.*, Eur. Phys. J. C **71**, 1695 (2011) S. Aoki *et al.*, Eur. Phys. J. C **74**, 2890 (2014) S. Aoki *et al.*, 1607.00299

e.g., quark masses

To find matrix elements, compute using an interpolating operator χ :

$$C_{2\text{pt}}(t,\vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle \chi(\vec{x},t)\,\bar{\chi}(\vec{0},0)\rangle$$

$$\stackrel{t\to\infty}{\longrightarrow} e^{-E(\vec{p})t} |\langle p|\bar{\chi}|\Omega\rangle|^{2}$$

$$C_{3\text{pt}}(T,\tau;\vec{p},\vec{p}') = \sum_{\vec{x},\vec{y}} e^{-i\vec{p}'\cdot\vec{x}} e^{i(\vec{p}'-\vec{p})\cdot\vec{y}} \langle \chi(\vec{x},T)O(\vec{y},\tau)\bar{\chi}(\vec{0},0)\rangle$$

$$\stackrel{\tau\to\infty}{\xrightarrow{T-\tau\to\infty}} e^{-E(\vec{p}')(T-\tau)} e^{-E(\vec{p})\tau} \langle \Omega|\chi|p'\rangle\langle p'|O|p\rangle\langle p|\bar{\chi}|\Omega\rangle$$

Then form ratios to isolate $\langle p'|O|p\rangle$.

Systematic error: excited states

With interpolating operator χ , compute, e.g.,

$$C_{\rm 2pt}(t) = \langle \chi(t)\chi^{\dagger}(0)\rangle = \sum_{n} e^{-E_{n}t} \left| \langle n|\chi^{\dagger}|0\rangle \right|^{2}$$

Page 6 APS GHP 2017

Systematic error: excited states

With interpolating operator χ , compute, e.g.,

$$C_{\rm 2pt}(t) = \langle \chi(t) \chi^{\dagger}(0) \rangle = \sum_{n} e^{-E_{n}t} \left| \langle n | \chi^{\dagger} | 0 \rangle \right|^{2}$$

leremy Green Y. Zeuthen Page 6 APS GHP 2017

Connected and disconnected diagrams

Two kinds of quark contractions required for $C_{3pt}(\tau,T) = \langle \chi(T)\bar{q}\Gamma q(\tau)\bar{\chi}(0) \rangle$:

- Connected, which we usually evaluate with sequential propagators through the sink.
- Disconnected, which requires stochastic estimation to evaluate the disconnected loop,

$$T(\vec{q},t,\Gamma) = -\sum_{\vec{x}} e^{i\vec{q}\cdot\vec{x}} \operatorname{Tr}[\Gamma D^{-1}(x,x)].$$

Introduce noise sources η that satisfy $E(\eta \eta^{\dagger}) = I$. By solving $\psi = D^{-1}\eta$, we get

$$D^{-1}(x,y) = E(\psi(x)\eta^{\dagger}(y)),$$

so that

$$T(\vec{q},t,\Gamma) = E\left(-\sum_{\vec{x}} e^{i\vec{q}\cdot\vec{x}}\eta^{\dagger}(x)\Gamma\psi(x)\right).$$

We then need to compute the *correlation* between this loop and a two-point correlator.

Neutron beta decay

Coupling to W boson via axial current depends on nucleon axial charge, $\langle p(P,s') | \bar{u} \gamma^{\mu} \gamma_5 d | n(P,s) \rangle = g_A \bar{u}_p(P,s') \gamma^{\mu} \gamma_5 u_n(P,s).$ Well-measured experimentally: $g_A = 1.2723(23)$.

Precision β -decay experiments may be sensitive to BSM physics; leading contributions are controlled by the (not measured experimentally) scalar and tensor charges: T. Bhattacharya *et al.*, Phys. Rev. D **85** (2012) 054512 [1110.6448]

$$\langle p(P,s')|\bar{u}d|n(P,s)\rangle = g_S \bar{u}_p(P,s')u_n(P,s),$$

$$\langle p(P,s')|\bar{u}\sigma^{\mu\nu}d|n(P,s)\rangle = g_T \bar{u}_p(P,s')\sigma^{\mu\nu}u_n(P,s).$$

Axial charge g_A: "benchmark" observable

Works that extend below 300 MeV.

Axial charge g_A : "benchmark" observable

Works that extend below 300 MeV, have $m_{\pi}L \ge 4$, and control exc. states.

Scalar and tensor charges: applications

T. Bhattacharya *et al.* (PNDME), Phys. Rev. D 94, 054508 [1606.07049] Using g_S , g_T : constraints on beta decay parameters imply constraints on non-standard 4-fermion couplings ε_S , ε_T .

T. Bhattacharya *et al.* (PNDME), Phys. Rev. Lett. **115**, 212002 [1506.04196] Using g_T^u , g_T^d : constraint on neutron electric dipole moment implies constraints on quark EDMs d_u , d_d .

Sigma terms

The contributions from quark masses to the nucleon mass.

$$\sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle \qquad \sigma_q = m_q \langle N | \bar{q}q | N \rangle$$

Control the sensitivity of direct-detection dark matter searches to WIMPs that interact via Higgs exchange.

Two main lattice approaches:

- 1. Direct calculation (requires disconnected diagrams).
- 2. Feynman-Hellmann theorem:

$$\sigma_q = m_q \frac{\partial m_N}{\partial m_q}$$

(requires multiple ensembles with different m_q).

Recent results using (near-)physical m_{π} :

Direct: Y.-B. Yang *et al.* (χ QCD), Phys. Rev. D **94**, 054503 [1511.09089] \rightarrow parallel talk today, 16:00 Direct: A. Abdel-Rehim *et al.* (ETMC), Phys. Rev. Lett. **116**, 252001 [1601.01624] Direct: G. S. Bali *et al.* (RQCD), Phys. Rev. D **93**, 094504 [1603.00827] Feynman-Hellmann: S. Durr *et al.* (BMWc), Phys. Rev. Lett. **116**, 172001 [1510.08013] Jeremy Green [DESY, Zeuthen] APS GHP 2017 | Page 13

Sigma terms: recent results

There is a disagreement for $\sigma_{\pi N}$ between LQCD and phenomenology.

Electromagnetic form factors

Proton matrix elements of vector current parameterized by Dirac and Pauli form factors:

$$\langle p',s'|J_{\rm em}^{\mu}|p,s\rangle = \bar{u}(p',s')\left(\gamma^{\mu}F_1(Q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2m_p}F_2(Q^2)\right)u(p,s),$$

where q = p' - p, $Q^2 = -q^2$. Or alternatively, by the electric and magnetic Sachs form factors,

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{(2m_p)^2}F_2(Q^2), \qquad G_M(Q^2) = F_1(Q^2) + F_2(Q^2).$$

At $Q^2 = 0$, these give the charge and magnetic moment of the proton, and their derivatives define the mean-squared electric and magnetic radii:

$$G_E^p(Q^2) = 1 - \frac{1}{6} (r_E^2)^p Q^2 + O(Q^4), \qquad G_M^p(Q^2) = \mu^p \left(1 - \frac{1}{6} (r_M^2)^p Q^2 + O(Q^4) \right)$$

To eliminate disconnected diagrams, we take the isovector combination,

$$G_{E,M}^{\upsilon} = G_{E,M}^{p} - G_{E,M}^{n}, \qquad F_{1,2}^{\upsilon} = F_{1,2}^{p} - F_{1,2}^{n}.$$

Results for near-physical m_{π} .

Results for near-physical m_{π} .

Proton radius problem

Two disagreeing values (> 5σ discrepancy) for the proton charge radius r_E^p .

- 1. "high" value: 0.8751(61) fm CODATA 2014
- 2. "low" value: 0.84087(39) fm

A. Antognini *et al.*, Science **339**, 417 (2013)

	е	μ
spectroscopy	high	low
scattering	high	?
QCD theory	?	

Traditional lattice strategy to determine r_E : fitting to $G_E(Q^2)$.

Problem: $Q_{\min}^2 \approx (2\pi/L)^2 \gtrsim 0.05 \text{ GeV}^2$, an order of magnitude higher than for data from experiment.

New methods for directly computing radius (and magnetic moment):

Correlators in a background field

Z. Davoudi and W. Detmold, Phys. Rev. D 92, 074506 [1507.01908]

• $\frac{\partial}{\partial a^2}$ using position-space moments

C. C. Chang *et al.*, Lattice 2016, 1610.02354 \rightarrow D. Richards parallel talk today, 17:15

• $\frac{\partial}{\partial q_{\mu}}$ using semi-position-space moments

C. Alexandrou *et al.*, Phys. Rev. D **94**, 074508 [1605.07327]

 $\frac{\partial}{\partial q_{\mu}} \text{ via derivative of twisted boundary conditions}$ N. Hasan *et al.*, Lattice 2016, 1611.06805

N. Hasan, M. Engelhardt, JG, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, S. Syritsyn, 1611.01383 $m_{\pi} \approx 135 \text{ MeV}, m_{\pi}L \approx 4$ Momentum derivative method yields $F_2(0)$ and $F'_1(0)$.

Define strange electromagnetic form factors using strange vector current:

$$J_{\text{em}}^{\mu} \to J_s^{\mu} \equiv \bar{s} \gamma^{\mu} s, \qquad G_{E,M}(Q^2) \to G_{E,M}^s(Q^2).$$

Determined by measuring the parity-violating asymmetry in elastic $\vec{e}p$ scattering, which is sensitive to Z exchange.

In lattice calculations, these arise purely from disconnected diagrams. Two recent calculations with a clear signal:

- 1. LHPC: JG, S. Meinel et al., Phys. Rev. D 92, 031501(R) [1505.01803]
 - One ensemble, $m_{\pi} = 317$ MeV, Wilson-clover fermions.
 - Strange and light disconnected loops.
- 2. χQCD: R. S. Sufian, Y.-B. Yang *et al.*, Phys. Rev. Lett. **118**, 042001 [1606.07075]
 - Four ensembles including m_{π} = 139 MeV, overlap on domain wall.
 - Also varied valence $m_{ud} \rightarrow 24$ different m_{π} (partially quenched).
 - Strange disconnected loops.

 \rightarrow see also P. Shanahan plenary talk Friday, 11:10

Strange magnetic form factor: comparison

Similar pion mass: 317 MeV (LHPC) and 330 MeV (χ QCD). At physical point, χ QCD gets $\mu^s = -0.064(14)(9)\mu_N$.

Strange electric form factor: $m_{\pi} = 317$ MeV

Forward-angle parity-violating elastic scattering experiments

$$\eta \approx AQ^2, A = 0.94 \text{ GeV}^{-2}$$

Disconnected axial form factors

$$\langle p'|\bar{q}\gamma_{\mu}\gamma_{5}q|p\rangle = \bar{u}(p')\left[\gamma_{\mu}G_{A}^{q}(Q^{2}) + \frac{(p'-p)_{\mu}}{2m_{p}}G_{P}^{q}(Q^{2})\right]\gamma_{5}u(p)$$

JG, Lattice 2016

Small mixing between light and strange quarks accounted for. \rightarrow Affects $G_A^s(Q^2)$ by up to 10% at $\mu = 2$ GeV. Disconnected contribution to $G_P(Q^2)$ is significant.

 $q(x,\mu)$ is interpreted as the probability to find a quark q with fraction x of the proton's momentum.

PDFs can be defined using a light cone operator:

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{ixz(n\cdot p)} \langle p|\bar{\psi}(0)W(0,zn)(n\cdot\gamma)\psi(zn)|p\rangle,$$

where $p = (p_0, 0, 0, p_z)$, $n = (1, 0, 0, -1)/\sqrt{2}$, and *W* is a straight gauge link. This can't be implemented on a Euclidean lattice.

Idea: take *n* spacelike, n = (0, 0, 0, -1) and define a quasi-PDF $\tilde{q}(x, \mu, p_z)$. These are related at large p_z :

$$\tilde{q}(x,\mu,p_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{p_z}\right) q(x,\mu) + O\left(\frac{\Lambda_{\rm QCD}^2}{p_z^2},\frac{m^2}{p_z^2}\right)$$

X. Ji, Phys. Rev. Lett. 110, 262002 [1305.1539]; many follow-up papers

PDFs from lattice QCD

Exploratory studies of PDFs q(x), $\Delta q(x)$, and $\delta q(x)$ by two groups:

- H.-W. Lin, J.-W. Chen, S. D. Cohen, X. Ji, Phys. Rev. D 91, 054510 [1402.1462]
 J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, J.-H. Zhang, Nucl. Phys. B 911, 246–273 [1603.06664]
- C. Alexandrou, K. Cichy, V. Drach *et al.*, Phys. Rev. D **92**, 014502 [1504.07455]
 C. Alexandrou, K. Cichy, M. Constantinou *et al.*, 1610.03689

Also study of total gluon helicity using large-momentum methods:

Y.-B. Yang, R. S. Sufian *et al.* (χ QCD) Phys. Rev. Lett. (to appear), 1609.05937 Additional challenges over standard observables:

- ► Need to take large-*p_z* limit. New "momentum smearing" yields improved signal at large *p_z*. G. S. Bali *et al.* (RQCD), PRD **93**, 094515 [1602.05525]
- Removal of power divergence and renormalization.

 \rightarrow J. Zhang, M. Constantinou, K. Orginos in parallel session on lattice PDFs Thursday, 11:00

Similar program to study TMDs on the lattice using staple-shaped links: B. U. Musch *et al.*: Europhys. Lett. **88**, 61001 [0908.1283]; Phys. Rev. D **83**, 094507 [1011.1213] B. U. Musch, M. Engelhardt *et al.*: Phys. Rev. D **85**, 094510 [1111.4249]; PRD **93**, 054501 [1506.07826] → M. Engelhardt parallel talk on orbital angular momentum Thursday, 12:15 C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese, 1610.03689

 $x < 0 \rightarrow$ antiquark PDFs $\bar{q}(x) = -q(-x)$ $m_{\pi} = 370 \text{ MeV}$

Effect of matching $\tilde{q} \rightarrow q$ and target mass corrections reduced at large p_z . Qualitative behaviour is similar to phenomenological curves. Calculations of quark-connected nucleon matrix elements and form factors are approaching maturity:

- Multiple collaborations are working with near-physical pion masses.
- Excited states and exponential growth of noise remain problems.
- ▶ Better control over remaining systematics $(a \rightarrow 0, L \rightarrow \infty)$ still needed.

There is a serious effort to calculate disconnected diagrams:

- Modern techniques seem effective at controlling the noise from stochastic estimation.
- Non-perturbative renormalization can also be done.

Exploratory calculations are ongoing for many more challenging observables:

- Direct computation of charge radii.
- Form factors at high Q^2 .
- Parton distribution functions and transverse momentum-dependent PDFs.