# Photon production in the bottom-up thermalization of heavy-ion collisions



Naoto Tanji Institut für Theoretische Physik Heidelberg University

arXiv: 1701.05064

collaboration with

Jürgen Berges (Heidelberg U.) Klaus Reygers (Heidelberg U.) Raju Venugopalan (BNL)



7th Workshop of the APS Topical Group on Hadronic Physics Feb. 2<sup>nd</sup>, 2017

## **Early times in heavy-ion collisions**



In weak coupling  $\alpha_s \ll 1$  , classical-statistical simulations can describe such systems.

Recent classical-statistical simulations of expanding Glasma have established **the bottom-up thermalization scenario** 

as the correct weak-coupling effective theory for early stage of heavy-ion collisions.

What is a phenomenological consequence?

Photon production at early times

## **Photons in heavy-ion collisions**



## **Photons in heavy-ion collisions**



The photon production in the pre-equilibrium stage is not included in the state-of-the-art calculations based on hydrodynamic and transport models.

Does Glasma shine brightly?

Parametric estimate of the photon yields in the Glasma and thermal QGP phases based on the bottom-up thermalization scenario.

Weak coupling effective kinetic description of thermalization in heavy-ion collisions

consistent with the use of the weak coupling formula for the photon production

1. Classical scaling regime

 $Q_s^{-1} \ll \tau \ll Q_s^{-1} \alpha_s^{-3/2}$ 

- 2. Formation stage of soft gluon bath  $Q_s^{-1}\alpha_s^{-3/2}\ll\tau\ll Q_s^{-1}\alpha_s^{-5/2}$
- 3. Heating up stage

$$Q_s^{-1} \alpha_s^{-5/2} \ll \tau \ll Q_s^{-1} \alpha_s^{-13/5}$$



FIG. 1. Characteristic momentum scales for the "bottom-up" scenario.

from Baier, Mueller, Schiff, Son (2002)

Weak coupling effective kinetic description of thermalization in heavy-ion collisions consistent with the use of the weak coupling formula for the photon production

1. Classical scaling regime

 $Q_s^{-1} \ll \tau \ll Q_s^{-1} \alpha_s^{-3/2}$ 

- 2. Formation stage of soft gluon bath  $Q_s^{-1}\alpha_s^{-3/2}\ll\tau\ll Q_s^{-1}\alpha_s^{-5/2}$
- 3. Heating up stage

$$Q_s^{-1} \alpha_s^{-5/2} \ll \tau \ll Q_s^{-1} \alpha_s^{-13/5}$$



FIG. 1. Characteristic momentum scales for the "bottom-up" scenario.

from Baier, Mueller, Schiff, Son (2002)

## **Bottom-up thermalization scenario**

1. Classical scaling regime  $Q_s^{-1} \ll \tau \ll Q_s^{-1} \alpha_s^{-3/2}$ 

- $\blacktriangleright$  The system is dominated by hard gluons whose transverse mom. is  $\ p_\perp \sim Q_s$  .
- $\blacktriangleright$  The occupancy of the hard gluons is much larger than one.  $f_{hard} \gg 1$
- 2-2 elastic (small angle) scatterings among hard gluons dominate the dynamics.

Scaling behavior 
$$f_g(\tau, p_\perp, p_z) = (Q_s \tau)^{-2/3} f_S\left(p_\perp, (Q_s \tau)^{1/3} p_z\right)$$

Confirmed by the classical-statistical simulations and the kinetic theory computations



## **Scaling behavior of Quarks**

What about quarks?

We numerically solved the Boltzmann eqs. for 2-2 scattering among quarks and gluons.

NT, Venugopalan, arXiv:1702.xxxx



In the first stage of the bottom-up thermalization, the quark distribution show the same scaling behavior as the gluon distribution.

- 2. Formation stage of soft gluon bath  $Q_s^{-1}\alpha_s^{-3/2} \ll \tau \ll Q_s^{-1}\alpha_s^{-5/2}$ 
  - $\succ f_{hard} < 1$
  - Soft gluons are produced by collinear splitting processes.
  - The number density is still dominated by hard gluons, but the Debye mass is dominated by soft gluons.

- 3. Heating up stage  $Q_s^{-1}\alpha_s^{-5/2} \ll \tau \ll Q_s^{-1}\alpha_s^{-13/5}$ 
  - Soft gluons form a thermal bath, and it is heated by the remaining hard gluons.

$$T(\tau) = c_T \alpha_s^3 Q_s^2 \tau$$

thermalization time  $au_{th} = c_{eq} \alpha_s^{-13/5} Q_s^{-1}$ temperature at that time  $T_{th} = c_{eq} c_T \alpha_s^{2/5} Q_s$ Unknown numerical coefficients, which can be constrained by measured charged hadron multiplicity

## **Constraint for the coefficients**

#### Entropy conservation after $au_{ m th}$



We treat  $Q_s$  for a fixed  $N_{part}$  as a free parameter, while adopting the  $N_{part}$  dependence from the IP-Glasma model.

RHIC and LHC values are related by  $(2.76/0.2)^{0.3}$ .

## **Constraint for the coefficients**

The combination  $c_{\rm eq}c_T^{3/4}$  is constrained.



The dependence on  $N_{\rm part}$  is mild.

BMSS estimate  $c_T \simeq 0.18$  to logarithmic accuracy. We vary between  $c_T = 0.1$  and 0.4

## Thermalization time vs. Hadronization time



Thermalization time

$$\tau_{\rm th} = c_{\rm eq} \alpha_s^{-13/5} Q_s^{-1}$$

Hadronization time

$$\tau_{c} = \frac{45}{74\pi^{2}} k \, \frac{1}{S_{\perp}} \frac{dN_{\rm ch}}{d\eta} \frac{1}{T_{c}^{3}} \qquad T_{c} = 154 \, {\rm MeV}$$

## Thermalization time vs. Hadronization time



Hadronization time

 $\tau_{c} = \frac{45}{74\pi^{2}} k \frac{1}{S_{\perp}} \frac{dN_{\rm ch}}{d\eta} \frac{1}{T_{c}^{3}} \qquad T_{c} = 154 \,\mathrm{MeV}$ 

QGP life time is much longer for the LHC than RHIC.

## **Estimation of the photon yields**

Production rate via the annihilation and Compton processes

$$E\frac{dN}{d^4Xd^3p} = \frac{1}{2(2\pi)^3} \int_{p_1,p_2,p_3} |\mathcal{M}|^2 (2\pi)^4 \delta^4 (P_1 + P_2 - P_3 - P) f_1(p_1) f_2(p_2) \left[1 \pm f_3(p_3)\right]$$

#### Thermal phase

$$E\frac{dN^{\text{th}}}{d^4xd^3p} = \frac{5}{9}C\frac{\alpha\alpha_s}{2\pi^2}T^2e^{-E/T} \qquad C \sim \log\left(1/\alpha_s\right) \qquad \text{Kapsta, Lichard, Seibert (1991)}$$
  
Ideal 1+1d expansion 
$$T(\tau) = T_{\text{th}}\left(\frac{\tau_{\text{th}}}{\tau}\right)^{1/3}$$

### Glasma phase

small-angle approximation

$$E\frac{dN}{d^4Xd^3p} = \frac{40}{9\pi^2}\alpha\alpha_s \mathcal{L} f_q(\boldsymbol{p}) \int \frac{d^3p'}{(2\pi)^3} \frac{1}{p'} \left[ f_g(\boldsymbol{p}') + f_q(\boldsymbol{p}') \right] \qquad \mathcal{L} \sim \log\left(1/\alpha_s\right)$$

- We integrate these rates over the expanding space-time.
- We consider the total photon yield by integrating over pT.

## **Photon production rate**



## Thermal vs. Glasma photon yields



• For lower collision energy,

the Glasma contribution is relatively more important.

• For less central collisions,

## Bottom-up scenario vs. Early-hydro scenario



Bottom-up thermalization scenario:
Glasma (i), (ii), (iii) + Thermal ( $\tau_{th} < \tau$ )

Hydro scenario that assumes early-thermalization:
Early-hydro ( $au_0 < au < au_{
m th}$ ) + Thermal ( $au_{
m th} < au$ )

## Bottom-up scenario vs. Early-hydro scenario



For this value of the saturation scale ( $Q_s = 1.4 \text{ GeV}$  for the RHIC most central collision), the two scenarios give the comparable photon yields.

For larger value of the saturation scale...

## Bottom-up scenario vs. Early-hydro scenario



For a larger value of the saturation scale ( $Q_s = 2 \text{ GeV}$  for the RHIC most central collision), the bottom-up thermalization scenario gives more photons.

## Summary and outlook

- Parametric estimates of the photon yields in the Glasma and the thermal QGP phases based on the bottom-up thermalization scenario.
- The Glasma contribution is not negligible although the space-time volume is small at early times.
- For lower collision energy or less central collisions, the Glasma contribution is relatively more important.
- In comparison between the bottom-up scenario and the early-hydro scenario, the former can give more photons for a large value of the saturation scale.

Mini-jet photon?

Ab-initio calculations (kinetic theory, classical-statistical simulations) are necessary to compute the photon spectrum and address v2.

## backup slides

## Initial temperature at the thermalization time



Initial temperature for the QGP phase  $T_{
m th} = c_{
m eq} c_T lpha_s^{2/5} Q_s$ 

Critical temperature  $T_c = 154 \,\mathrm{MeV}$ 

## **Qs-dependence**

For given hadron multiplicities, we vary the value of the saturation scale.



- $\succ$  The thermal and early-hydro contributions are not strongly dependent of  $Q_s$ .
- $\blacktriangleright$  The Glasma photon yield is nearly proportional to  $Q_s^2$  .
- $\succ$  For larger  $Q_s$ , the Glasma contribution dominates.