

7th Workshop of the APS Topical Group on Hadronic Physics

Strong interaction with strangeness in the low energy regime: strange atoms, resonances, nuclei

J. Marton for SIDDHARTA2 and AMADEUS SMI Vienna, Austria

Motivation

- Hadronic Physics according to the mass scale
 - Light quarks up, down
 - (Semi-) light quark strange quark
 - Heavy quarks charm, bottom, top
- Strong interaction with strangeness regime of spontaneous and explicit chiral symmetry breaking
- Scattering and spectroscopic (e.g. kaonic atoms) investigations
 some key data still missing
- Bound states: Hyperons, resonances and hypernuclei production mechanism, properties
- Role of strangeness in the universe (compact stars, relation to GW in binaries)? "Hyperon puzzle", hyperons in medium

Outline

- Hadronic atoms as probes for strong interaction at threshold
- Results of experiments at DAFNE/LNF-INFN
 - SIDDHARTA: Antikaon-nucleon interaction
 - AMADEUS: Antikaon interaction with nuclei
- SIDDHARTA2 Kaonic deuterium experiment
 - Experimental challenges (yield, background)
 - Target and Instrumentation
- Summary and Outlook

Strangeness

• Strange quark – not *light* but not *heavy*

Kaonic atoms → Spontaneous and explicit Chiral symmetry breaking in low-energy QCD

K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Sources of experimental information on K_{har}N interaction

K-p scattering data for threshold data extrapolation necessary

[qm]

K 200

1 150

 $\sigma(K^-p)$

 $\sigma(K^-p \to \pi^-\Sigma^+) \ [\mathrm{mb}]$

 $\rightarrow \pi^0 \Sigma^0$) [mb]

 $\sigma(K^-p)$ 40

300

100

80

70

60

50 40

30 20

120

80

60

20

Plab [MeV/c]

50

a 250

TWB ----TWB $(K^-p \rightarrow \bar{K}^0n)$ [mb] 40 30 20 100 100 Plab [MeV/c] Plab [MeV/c] TWB ----TWB qu $\pi(K^-p \to \pi^+\Sigma^-)$ 150 200 200 P_{lab} [MeV/c] P_{lab} [MeV/c] TWB TWB $\sigma(K^-p \rightarrow \pi^0 \Lambda^0) \ [mb]$ 20

P_{lab} [MeV/c]

threshold branching ratios $\frac{\Gamma(\mathrm{K^-p} \rightarrow \pi^+ \Sigma^-)}{\Gamma(\mathrm{K^-p} \rightarrow \pi^- \Sigma^+)}$ $\Gamma(K^-p \rightarrow \pi^+\Sigma^-, \pi^-\Sigma^+)$ $\Gamma(K^-p \rightarrow all inelastic channels)$ $\Gamma(K^-p\to\pi^0\Lambda)$ $\Gamma(K^-p \rightarrow neutral \ states)$

Threshold branching ratios

Kaonic atom data

Kaonic hydrogen Kaonic Deuterium

1s state shift 1s state width

 \rightarrow x-ray spectroscopy

Constraints from precise kaonic hydrogen measurements \rightarrow sub-threshold extrapolations of the KbarN amplitude with strongly reduced uncertainties

Cascade in hadronic atoms (KH,KD)

Hadron physics with strangeness at DAFNE/LNF-INFN

SIDDHARTA

AMADEUS

SIDDHARTA collaboration

SIlicon Drift Detector for Hadronic Atom

Research by Timing Applications

LNF- INFN, Frascati, Italy SMI - ÖAW, Vienna, Austria IFIN – HH, Bucharest, Romania Politecnico, Milano, Italy MPE, Garching, Germany PNSensors, Munich, Germany RIKEN, Japan Univ. Tokyo, Japan Victoria Univ., Canada

EU Fundings: JRA10 – FP6 - I3HP Network WP9 – LEANNIS – FP7- I3HP2 Austrian Science Fund

SIDDHARTA data overview

Kaonic atoms at DA_ΦNE/Frascati

DAΦNE: Φ Factory of LNF-INFN

Double anular electron-positron collider producing Φ (1020 MeV) resonantly ($\sigma \approx 5 \ \mu b$ $m_{\Phi} = 1019.413 \pm 0.008$ MeV $\Gamma = 4.43 \pm 0.06$ MeV

K+

Flux of produced kaons: about 1000/second

Beam pipe in e⁺e⁻ intersection of SIDDHARTA

Kaon detectors sitting below and above the intersection

SIDDHARTA used the **KLOE** intersection of DAFNE

Luminosity increased with new system providing a large crossing angle (crab waist system)

Kaon window

SIDDHARTA SDD Array 144 SDDs =144 cm² active area

SIDDHARTA data taking

Syst. error \approx 3-4 eV

Background suppression in SIDDHARTA

Efficient background suppression by using the kaon - x-ray correlation

K⁻p result SIDDHARTA

Kaonic atoms with deuterium gas (SIDDHARTA)

fit for shift about 500 eV, width about 1000eV, K α / Kcomplex = 0.4

Yield of K-series in KD

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Nuclear Physics A 907 (2013) 69-77

www.elsevier.com/locate/nuclphysa

Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at $DA\Phi NE$

M. Bazzi^a, G. Beer^b, C. Berucci^{c,a}, L. Bombelli^d, A.M. Bragadireanu^{a,e}, M. Cargnelli^{c,*}, C. Curceanu (Petrascu)^a A. d'Uffizi^a, C. Fiorini^d, T. Frizzi^d, F. Ghio^f, C. Guaraldo^a, R. Hayano^g, M. Iliescu^a,
T. Ishiwatari^c, M. Iwasaki^h, P. Kienle^{c,i,1}, P. Levi Sandri^a, A. Longoni^d,
J. Marton^c, S. Okada^h, D. Pietreanu^{a,e}, T. Ponta^e, A. Romero Vidal^j, E. Sbardella^a, A. Scordo^a, H. Shi^g, D.L. Sirghi^{a,e}, F. Sirghi^{a,e}, H. Tatsuno^a, A. Tudorache^e, V. Tudorache^e, O. Vazquez Doceⁱ, E. Widmann^c, J. Zmeskal^c Upper limits (90 C.L.) for the x-ray yield (SIDDHARTA)

 $Y(K_{tot}) < 0.0143$ $Y(K_{\alpha}) < 0.0039$

Results of SIDDHARTA

Kaonic Hydrogen: 400pb⁻¹, most precise measurement, Physics Letters B704 (2011) 113

Kaonic deuterium: 100 pb⁻¹, exploratory first measurement ever, Nucl. Phys.A907 (2013)69

- Kaonic helium 4: first measurement ever in gaseous target; published in Phys. Lett. B 681 (2009) 310; NIM A628 (2011) 264 and Phys. Lett. B 697 (2011)

- Kaonic helium 3: 10 pb⁻¹, first measurement, published in Phys. Lett. B 697 (2011) 199

	Physics Letters B 704 (2011) 113–117	
	Contents lists available at SciVerse ScienceDirect	MINAGE LETTERS &
2.61	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	Tage Br

A new measurement of kaonic hydrogen X-rays

SIDDHARTA Collaboration

M. Bazzi^a, G. Beer^b, L. Bombelli^c, A.M. Bragadireanu^{a,d}, M. Cargnelli^e,^{*}, G. Corradi^a, C. Curceanu (Petrascu)^a, A. d'Uffizi^a, C. Fiorini^c, T. Frizzi^c, F. Ghio^f, B. Girolami^f, C. Guaraldo^a, R.S. Hayano^g, M. Iliescu^{a,d}, T. Ishiwatari^e, M. Iwasaki^h, P. Kienle^{e,1}, P. Levi Sandri^a, A. Longoni^c, V. Lucherini^a, J. Marton^e, S. Okada^{a,*}, D. Pietreanu^{a,d}, T. Ponta^d, A. Rizzo^a, A. Romero Vidal^a, A. Scordo^a, H. Shi^g, D.L. Sirghi^{a,d}, F. Sirghi^{a,d}, H. Tatsuno^{g,1}, A. Tudorache^d, V. Tudorache^d, O. Vazquez Doce^a, E. Widmann^e, J. Zmeskal^e

anic hydrogen casts new light on strong dynamics - CERN Courier	26.10.11 17:10
CERN Courier	
CERN COURIER	
Oct 25, 2011	
Kaonic hydrogen casts new light on strong dynam!	lcs

(http://images.iop.org/objects/ccr/cern/51/9/6/CCnew3_09_11.jpg) SIDDHARTA (http://images.iop.org/objects/ccr/cern/51/9/6/CCnew3_09_11.jpg) Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A881 (2012) 98-114.

Fig. 4. Real part (left) and imaginary part (right) of the $K^- p \rightarrow K^- p$ forward scattering amplitude obtained from the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the $K^- p$ scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

Motivation for new experiments

- SIDDHARTA K-p strong interaction observables
- SIDDHARTA First exploratory experiment on K⁻D

But: No data on hadronic shift and width of 1s state of kaonic deuterium

 \rightarrow still to be measured

- ➤ Study of K-n interaction: Isospin-dependent scattering lengths from KH and KD → K⁻p interaction at low energy is well understood, but the case of K⁻d represents the most important missing information
- High resolution studies of kaonic atoms (e.g. K-He, heavier kaonic atoms)

Expected shift and width

<i>a_d</i> [fm]	ε _{1s} [eV]	$\Gamma_{ m 1s}$ [eV]	Reference	=> shift = -800 eV width = 800 eV
-1.58 + <i>i</i> 1.37	- 887	757	Mizutani 2013 [4]	
-1.48 + <i>i</i> 1.22	- 787	1011	Shevchenko 2012 [5]	
-1.46 + <i>i</i> 1.08	- 779	650	Meißner 2011 [1]	used in simulation
-1.42 + <i>i</i> 1.09	- 769	674	Gal 2007 [6]	
-1.66 + <i>i</i> 1.28	- 884	665	Meißner 2006 [7]	

Modified Deser formula next-to-leading order in isospin breaking (Meißner, Raha, Rusetsky 2004 [3]) (μ_c reduced mass of K⁻d, α finestructure constant)

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_d \left(1 - 2\alpha \mu_c \left(\ln \alpha - 1\right) a_d\right) \quad (1)$$

- [1] M. Döring, U.-G. Meißner, Phys. Lett. B 704 (2011) 663.
- [3] U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349.
- [4] T. Mizutani, C. Fayard, B. Saghai, K. Tsushima, arXiv:1211.5824[hep-ph] (2013).
- [5] N.V. Shevchenko, Nucl. Phys. A 890-891 (2012) 50-61.
- [6] A. Gal, Int. J. Mod. Phys. A22 (2007) 226
- [7] U.-G. Meißner, U. Raha, A. Rusetsky, Eur. phys. J. C47 (2006) 473

Isospin scattering lengths

- The isospin scattering lengths a_0 and a_1 for I=0,1 cannot be determined from ϵ_{1s} and Γ_{1s} from kaonic hydrogen.
- The (modified) Deser-type formula U.G.Meißner, U.Raha, A.Rusetsky, Eur. Phys. J.C35(2004)349, arXiv:hep-ph/0402261.

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p (1 - 2\alpha \mu_c (\ln \alpha - 1)a_p)$$

 $a_p = \frac{1}{2}(a_0 + a_1)$

Kaonic deuterium provides
 the lacking information

$$a_{K} - p = \frac{1}{2} [a_{0} + a_{1}]$$

$$a_{K} - n = a_{1}$$

$$a_{K} - d = [a_{0} + 3a_{1}]Q + C$$

$$Q = \frac{[m_{N} + m_{K}]}{[2m_{N} + m_{K}]}$$

1

AMADEUS

Antikaon Matter At DA Φ NE: Experiments with Unraveling Spectroscopy

AMADEUS collaboration 116 scientists from 14 Countries and 34 Institutes

lnf.infn.it/esperimenti/siddharta

and LNF-07/24(IR) Report on lnf.infn.it web-page (Library)

AMADEUS started in 2005 and was presented and discussed in all the LNF Scientific Committees

EU Fundings FP7 – HP2 and HP3: Network WP9 – LEANNIS; WP24 (SiPM JRA); WP28 (GEM JRA)

Kaon scattering

Subthreshold resonances

Antikaon nuclear absorption

AMADEUS- a laboratory for low-energy kaon physics

Antikaon bound states

Hypernuclear physics

Consequences of strangeness for dense baryonic matter (neutron stars)?

Pre-AMADEUS studies with KLOE data

- Study of antikaon interaction in nuclear matter following K⁻ absorption in the DC gas (or structure materials)
- KLOE drift chamber (DC) gas: mainly ⁴He (90% ⁴He, 10% isobutane C₄H₁₀)
- 0.1% K⁻ stop in the DC gas (Monte Carlo, data analysis)
- Enables the study of K⁻ absorption and searches for bound states (e.g. with 2 fb⁻¹ hundreds of kaonic clusters) – analysis of Λ/Σ – p,d, t correlations
- However: Analysis complicated due to material mix

Antikaon absorption in nuclei

To measure the amount of resonant capture \rightarrow position of the resonance

- YN CORRELATION 2)
 - K⁻'pp' $\rightarrow \Lambda/\Sigma^0 p$ (without YN scattering) $\rightarrow (K^-'pp')^{B.S.}$
 - K' 'ppn' $\rightarrow \Lambda d$ (without YN scattering) $\rightarrow (K' 'ppn')^{B.S.}$
 - K'ppnn' $\rightarrow \Lambda t$

- \rightarrow rare 4NA

search for possible bound states

- with YN scattering \rightarrow to get information on U_{VN}

Quasi-bound kaonic nuclei ?

Decay widths and binding energies from experiment and theory:

The present knowledge from experiment and theory is still insufficient to make a clear statement about quasi-bound kaonic nuclear systems

- Experiments so far:
 FINUDA
 KEK
 DISTO
 FOPI
 HADES
 OBELIX
 J-PARC E15, E27
- Future: AMADEUS

Recent results from Pre-AMADEUS

O. Vázquez Doce^{1,2}, L. Fabbietti^{1,2}, M. Cargnelli³, C. Curceanu⁴, J. Marton³, K. Piscicchia^{4,5}, A. Scordo⁴, D. Sirghi⁴, I. Tucakovic⁴, S. Wycech⁶, J. Zmeskal³, A. Anastasi^{4,7}, F. Curciarello^{7,8,9}, E. Czerwinski¹⁰, W. Krzemien⁶, G. Mandaglio^{7,11}, M. Martini^{4,12}, P. Moskal¹⁰, V. Patera^{13,14}, E. Pérez del Rio⁴ and M. Silarsk

₩_{0.06}

Possible AMADEUS Setup

Kaonic deuterium Experiment: new instrumentation

From SIDDHARTA to SIDDHARTA2

- New SDDs with CUBE preamp
- Factor 2 in density of deuterium gas
- Kaon trigger geometry and arrangement
- Discrimination K⁺/K⁻ by lifetime detector
- Active shielding of apparatus
- Better timing resolution of SDDs by cooling

SIDDHARTA

SIDDHARTA2

Lightweight cryogenic target (used for KH)

Prototypes

New SDDs for SIDDHARTA2

SIDDHARTA

- JFET integrated on SDD
- lowest total anode capacitance
- limited JFET performance
- sophisticated SDD+JFET technology

3x1 matrix

SIDDHARTA2

- external CUBE preamplifier (MOSFET input transistor)
- larger total anode capacitance
- better FET performances
- standard SDD technology

4x2 matrix

Energy resolution of new SDD

Target – SDD geometry

SIDDHARTA2 Setup at DAFNE

- new target design
- new SDD arrangement
- vacuum chamber
- more cooling power
- improved trigger scheme
- shielding and anti-coincidence (veto)

SDD Characterization

- Extremely important for precision x-ray spectroscopy
 - Stability
 - Long term monitoring gain and offset
 - Stability under small temperature variations
 - Gain stability at different x-ray rates
 - Linearity
 - SDD time response at various temperatures
 - SDD operation at low temperatures
 - Radiation hardness

	Signal to background	Kα events				
SIDDHARTA	1:100	1280				
from SIDDHARTA to SIDDHARTA-2						
Improved setup: Cryogenic target new SDDs	1:18	5210				
Trigger 1	1:12	3865				
Veto-1	1:8.5	3074				
Veto-2	1:4.4	2686				
K+ discrimination	1:3.1	2664				
Drift time 400 ns	1:3.0	2664				
SIDDHARTA-2 final Monte Carlo results						
SIDDHARTA-2	1:3.0	2664				

Running SIDDHARTA2

The new SDDs will allow to run in "topping up" mode (*)

• due to cube preamplifier technology

≻80% duty cycle

(*) if background conditions are similar to the SIDDHARTA ones

Kaonic deuterium with SIDDHARTA2 at DAFNE

width 800 eV density: 3% (LHD) detector area: 246 cm² Ka yield: 0.1 % yield ratio as in K⁻p S/B~1:3

charged particle veto asynchronous BG

We expect to measure shift and width of kaonic deuterium with a similar relative precision like kaonic hydrogen

Time-line SIDDHARTA2

- Setup ready 2017
- Installation at DAFNE 2018
- Beam time after optimization 800 pb⁻¹

First determination of the hadronic shift and width of the 1s ground state of kaonic deuterium leading to the extraction of the isospin-dependent scattering lengths

Summary

- SIDDHARTA important results on light kaonic atoms, AMADEUS studies on K_{bar} interaction on nuclei
- Strong impact for K_{bar}N theory
- SIDDHARTA first exploratory experiment on K⁻d – important for the planning of SIDDHARTA2
- SIDDHARTA2 with strongly improved apparatus aiming at a first extraction of 1s state shift and width in kaonic deuterium
- SIDDHARTA2 at DAFNE beamtime in 2018/2019

Thank you for Your attention