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Beam energy scan and freeze-out curve

Chiral crossover region from lattice:
Tc = 147 . . . 157
Wuppertal-Budapest:
[hep-lat/0611014,hep-lat/0609068,0903.4155,1005.3508]

HotQCD: [1111.1710]

At RHIC a broad energy range√
sNN = 7.7 . . . 200 has been

scanned with heavy ion collisions.
Last inelastic scattering:
chemical freeze-out.
For each energy the chemical
freeze-out is described as a grand
canonical ensemble with one
temperature and chemical potential.
Traditional method:
Hadron Resonance Gas
(HRG)-based statistical fit of pion,
kaon, proton, etc yields.
Fit result at

√
sNN = 130GeV

µB = 38(12) MeV and
Tch = 165(5) MeV.
[Andronic et al nucl-th/0511071]



Equation of state with up,down and strange quarks

stout result: Wuppertal-Budapest group [1309.5258]

HISQ result: Bielefeld-Brookhaven group [1407.6397]
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Equation of state at high temperatures

The Wuppertal-Budapest equation of state has recently beeen updated:
[1606.07494].
2+1+1 flavor simulations (with the charm quark), the effect of the
bottom quark is estimated.
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The ratio of the two results can be described by a tree-level threshold
function.



Perturbative parametrization at high temperatures

Applying the tree-level charm threshold to the perturbative pressure
p

T 4
= # + #g2 + #g3 + #g4 + #g4 log(g) + #g5 + #g6 log(g) + ?g6

[Kajantie 2002]

The g6 term is fitted to lattice (−3200 < qc < −2700).

The fit describes the pressure and trace anomaly from 500 MeV.

Next we can introduce the bottom quark treshold keeping qc fixed.
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Fluctuations in a grand canonical ensemble

The expectation value of a conserved charge is a derivative with respect
to the chemical potential.

〈Nq〉 = T
∂ logZ (T ,V , {µq})

∂µq

The response of the system to the thermodynamic force µq is
proportional to the fluctuation of the conserved charge:

∂〈Ni 〉
∂µj

= T
∂2 logZ (T ,V , {µq})

∂µj∂µi
=

1

T
(〈NiNj〉 − 〈Ni 〉〈Nj〉)

The higher derivatives are the generalized quark number susceptibilities:

χu,d,s,c
i,j,k,l =

∂ i+j+k+l(p/T 4)

(∂µ̂u)i (∂µ̂d)j(∂µ̂s)k(∂µ̂c)l

with µ̂q = µq/T .



All diagonal fluctuations
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Off-diagonal susceptibilities
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Fluctuations on the lattice

The partition function of the lattice gauge theory with staggered fermions is

Z =

∫
DU e−Sg (detMu(µu))1/4(detMd(µd))1/4(detMs(µs))1/4 =

∫
DU e−Seff

where Sg is the gauge action. For µ > 0 the determinant becomes complex.
Derivatives, however, are still accessible using µ = 0 simulations.
First derivative of the free energy density:

∂i logZ =
1

Z

∫
DU ∂ie

−Seff = 〈Ai 〉 , Ai =
1

4

d log detMi (µi )

dµi
=

1

4
TrM ′M−1

The 2nd derivative reads

∂i∂j logZ = 〈AiAj〉 − 〈Ai 〉 〈Aj〉+ δij 〈dAi/dµ〉
In terms of physical derivatives

d

dµB
=

1

3
∂u +

1

3
∂d +

1

3
∂s ,

d

dµQ
=

2

3
∂u − 1

3
∂d − 1

3
∂s ,

d

dµS
= −∂s



The sign problem

The fermion determinant detM = |detM|e iθ has a fluctuating phase at
µ > 0: [Allton hep-lat/02040130]

θ =
1

4
Nf Im

[
µ
∂ln detM

∂µ
+
µ3

3!

∂ln detM

∂µ
+ . . .

]

The fluctuation of A = ∂ln detM/∂µ gives at LO for the phase:

〈
θ2
〉

= −1

9
µ2
BL

3TN2
f χ

ud
11

(∼ 1 at µB ≈ 100 MeV, with T = Tc and LT = 3.)
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Equation of state at finite density

Taylor approach: p(µB )
T 4 = p(0)

T 4 + χB
2
µ2
B

2!T 2 + χB
4
µ4
B

4!T 4 + χB
6
µ6
B

6!T 6 + . . .

χB
n =

∂n logZ

[∂(µB/T )]n

MILC and BNL-Bielefeld: Nt = 6 3rd order [1003.5682, hep-lat/0512040]

In heavy ion phenomenology at RHIC µB > 0 but the strangeness vanishes.

MS = 0, MQ = MB
Z

A
, r =

Z

A
=

79

197
≈ 0.4 gold

This turns χB into comlpicated mixed derivatives [BNL-Bielefeld 1208.1220].

1. Taylor method

µB derivatives at µB = 0
simulations;
more statistics are required
2. Analytical continuation

µ2
B ≤ 0 simulations;

careful analysis of systematics is
required

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

Roberge-Weiss temperature:
T 2+1f

RW = 208(5) MeV [Bonati et al. 1602.01426]



Pressure coefficients

Taylor method: mostly Nt = 8, O(105) configurations point, [HotQCD: 18.00]
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Adiabatic trajectories in the phase diagram
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Physics at imaginary µB

Well studied phase diagram: [Fodor &Katz hep-lat/0104001] [de Forcrand & Philipsen hep-lat/0205016] [Philipsen

0708.1293, Philipsen 1402.0838] [Cea et al hep-lat/0612018,0905.1292,1202.5700] [Bonati et al 1410.5758,1507.03571,1602.01426]

At imaginary µB there is no sign problem. The observables, including the
crossover line, are analytical functions of µ2

B .
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Tuning to strangeness neutrality: 〈nS〉 = 0

We simulate each ensemble with an imaginary µB , µS pair such that
〈nS〉 = 0. This requires a non-trivial fine-tuning.
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To compansated the remaining slight inaccuracies of the tuning and to
achieve 〈nQ〉 = 0.4〈nB〉 we correct all generalized quark number
susceptibilities using higher order µQ and µS deviratives for each
simulation point.



Strangeness and electric charge chemical potential

We have to calculate µQ(µB) and µS(µB) that are defined by the
constraints of the experimental setup:

〈S〉 = 0 〈Q〉/〈B〉 = ZAu/AAu ≈ 0.4

Our latest continuum extrapolations with up to Nτ = 24:
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Strangeness sectors from the lattice

Lattice can calculate the partial pressure sector by sector.
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Strangeness and electric charge chemical potential

We have to calculate µQ(µB) and µS(µB) that are defined by the
constraints of the experimental setup:

〈S〉 = 0 〈Q〉/〈B〉 = ZAu/AAu ≈ 0.4

In the continuum limit, extrapolated to finite µB beyond leading order:
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Analytic continuation

continuation
d(p/T^4)/dµ
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Many exploratory studies: [de Forcrand & Philipsen hep-lat/0205016]

[Philipsen 0708.1293] [Philipsen 1402.0838] [Cea et al hep-lat/0612018,0905.1292,1202.5700]



Curvature of the phase diagram

The Tc(µB) can be expandedd around µB = 0 (Taylor method) or found
through analytical continuation with Im µB > 0.

Tc(µB)

Tc
= 1− κ

(
µB

Tc(µ)

)2

+ . . .

Lattice 2015, Kobe:
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Fluctuations from experiment

At RHIC STAR has measured the mean, variance, skewness and kurtosis
of the event-by-event net charge distribution at various energies and
centralities.

4

0.5 < |η| < 1.0, chosen to be beyond the analysis window
of the net-charge distributions. The centrality is repre-
sented by the average number of participating nucleons
(⟨Npart⟩) as well as percentage of total cross section, ob-
tained by the Monte Carlo (MC) Glauber simulation [31].
The total number of events analyzed are (in millions):
1.4, 2.4, 15.5, 24, 56, 32 and 75 for

√
sNN = 7.7, 11.5,

19.6, 27, 39, 62.4 and 200 GeV, respectively.

The measured positive (N+) and negative (N−)
charged particle multiplicities within |η| < 0.5 and
0.2 < pT < 2.0 GeV/c (after removing protons and anti-
protons with pT < 400 MeV/c) are used to calculate net-
charge (N+ − N−) in each event. The net-charge distri-
butions are obtained for different centrality classes. The
finite centrality bin width may cause volume variations
within a given centrality class and may introduce ad-
ditional fluctuations. The moments and moments prod-
ucts are calculated at every integer value of the centrality
variable. The values shown in the figures are weighted
averages in 5% or 10% wide centrality bins, where the
weights are the number of events at each value of the
centrality variable normalized to unity within each such
centrality bin. Such weighted averages effectively remove
the dependence of the results in the width of the central-
ity bin [32, 33]. Finite reconstruction efficiencies of the
charged particles affect the measured moments. The effi-
ciency for each centrality and collision energy is obtained
by using the embedding technique [34]. The average ef-
ficiencies vary within 63%−66% and 70%−73% for most
central (0-5% bin) and peripheral (70-80% bin) events,
respectively, for all collision energies. The corrections to
the moments are based on binomial probability distribu-
tions of efficiency [17]. For κσ2, the efficiency correction
factors for all energies and centralities are consistent with
unity, whereas for Sσ, these factors vary from 1.4 to 1.0
from peripheral to central collisions for all energies.

The statistical errors of the moments and their prod-
ucts have been calculated using the Delta theorem ap-
proach [35] and Bootstrap method [36] for efficiency-
uncorrected and corrected results, respectively. The sta-
tistical uncertainties in the corrected results increase
compared with the uncorrected ones because the effi-
ciency corrections involve higher-order cumulants. The
systematic uncertainties are obtained by varying the
track selection criteria of the charged particles, such as
the number of fit points, DCA, and the number of hit
points used to calculate ionization energy loss (dE/dx)
in the TPC. The final systematic errors were estimated
by including an additional 5% uncertainty in the recon-
struction efficiency.

In Fig. 1, the efficiency and centrality bin width cor-
rected moments of the net-charge distributions are plot-
ted as a function of ⟨Npart⟩ for Au+Au collisions at
seven colliding energies. The statistical errors dominate
in most cases and the systematic errors are within the
symbol size. For all the collision energies, we observe
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FIG. 1: (Color online) The efficiency and centrality bin width
corrected (a) mean, (b) standard deviation, (c) skewness and
(d) kurtosis of the net-charge multiplicity distributions as a
function of number of participating nucleons (⟨Npart⟩) for
Au+Au collisions. The dotted lines represent calculations
from the central limit theorem. The error bars are statistical
and systematic errors are within the symbol sizes.

that the M and σ values increase, whereas S and κ val-
ues decrease with increasing ⟨Npart⟩. The dotted lines in
the figure are central limit theorem (CLT) calculations
of the moments as a function of ⟨Npart⟩ [37], which as-
sume independent emission sources. These calculations
follow the general trend of the data points. However,
deviations from the CLT have been observed for several
data points where the χ2 values are as large as 16.9 for 7
degrees of freedom. This may imply correlated emission
of particles. The volume dependences of the moments
are evident from Fig. 1, plotted as a function of ⟨Npart⟩,
which are cancelled in suitably constructed products of
the moments.

In order to understand the nature of moments and
their products, it is essential to compare the experimental
results with baseline calculations. Two such calculations,
one using the Poisson distribution and the other the neg-
ative binomial distribution (NBD), have been studied.
In case of the Poisson baseline, the positive and nega-
tive charged particle multiplicities are randomly sampled
from their mean values, resulting in a Skellam net-charge
distribution [38]. The NBD baselines are constructed by
using both the measured mean values and variances of
the positive and negative charged particles [39]. Like the
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FIG. 4: (Color online) Beam-energy dependence of (a) σ2/M ,
(b) Sσ, and (c) κσ2, after all corrections, for most central (0-
5%) and peripheral (70-80%) bins. The error bars are statis-
tical and the caps represent systematic errors. Results from
the Poisson and the NBD baselines are superimposed. The
values of κσ2 for Poisson baseline are always unity.

for Poisson baselines are always unity. For peripheral
collisions the κσ2 values show almost no variation as a
function of beam energy and lie above the Poisson base-
line and below the NBD baseline. For central collisions,
within the statistical and systematic errors of the data,
the κσ2 values at all energies are consistent with each
other, except for

√
sNN = 7.7 GeV. The weighted mean

of κσ2 calculated for central collisions at all energies is
2.4 ± 1.2. For central collisions, both of the baseline cal-
culations follow the data points except for the one at
the lowest energy. Deviations of the data points with re-
spect to the baseline calculations have been quantified in
terms of the significance of deviation, defined as, (|Data–

Baseline|)/(
√

err2stat + err2sys), where errstat and errsys are

the statistical and systematic errors, respectively. These
deviations remain within 2 in case of Sσ and κσ2 with
respect to the corresponding Poisson and NBD baselines.
This implies that the products of moments do not show
non-monotonic behaviour as a function of beam energy.

Fluctuations of conserved quantities are originally pro-
posed to locate the QCD critical point in high-energy
nuclear collisions [7–9]. However, these fluctuations can

also be used to extract the thermodynamic informa-
tion on chemical freeze-out by comparing experimentally
measured higher moments with those from first-principle
lattice QCD calculations [22]. Higher-order correlation
functions allow stricter tests on the thermal equilibrium
in heavy-ion collisions. Estimations of freeze-out pa-
rameters based on preliminary experimental data have
been obtained from these studies [40, 41]. Tradition-
ally, by using the integrated hadron yields, the first mo-
ment of the fluctuations, the chemical freeze-out can
be extracted from hadron resonance gas (HRG) mod-
els [24, 42]. From the latest lattice [43] and HRG analy-
ses [44] using the STAR net-charge and net-proton results
for central Au+Au collisions at 7.7 to 200 GeV, the ex-
tracted freeze-out temperatures range from 135 to 151
MeV and µB values range from 326 to 23 MeV. Note
that this is the first time that the experimentally mea-
sured higher moments are used to determine the chemi-
cal freeze-out conditions in high-energy nuclear collisions.
The freeze-out temperatures obtained from the higher
moments analysis are lower with respect to the tradi-
tional method [24, 45]. This difference could indicate a
higher sensitivity to freeze-out in the higher moments,
which warrants further investigation.

In summary, the first results of the moments of net-
charge multiplicity distributions for |η| < 0.5 as a func-
tion of centrality for Au+Au collisions at seven collision
energies from

√
sNN = 7.7 to 200 GeV are presented.

These data can be used to explore the nature of the
QCD phase transition and to locate the QCD critical
point. We observe that the σ2/M values increase mono-
tonically with increasing beam energy. Weak central-
ity dependence is observed for both Sσ and κσ2 at all
energies. The Sσ values increase with decreasing beam
energy, whereas κσ2 values are uniform except at the
lowest beam energy. Most of the data points show de-
viations from Poisson baselines. The NBD baselines are
closer to the data than Poisson, but do not quantita-
tively reproduce the data, implying the importance of
intra-event correlations of the multiplicities of positive
and negative particles in the data. Within the present
uncertainties, no non-monotonic behavior has been ob-
served in the products of moments as a function of colli-
sion energy. The measured moments of net-charge mul-
tiplicity distributions provide unique information about
the thermal conditions at freeze-out by directly compar-
ing with theoretical model calculations. Future measure-
ments with high statistics data will be needed for pre-
cise determination of freeze-out conditions and to make
definitive conclusions regarding the critical point.
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Fluctuations at finite µB

We have to calculate µQ(µB) and µS(µB) that are defined by the
constraints of the experimental setup:

〈S〉 = 0 〈Q〉/〈B〉 = ZAu/AAu ≈ 0.4

MQ = VχQ
1 (µB) = VµB

[
χBQ
11 + χQS

11

dµS

dµB
+ χQ

2

dµQ

dµB

]
+O(Vµ3

B)

σ2
Q = VχQ

2 (µB) = VχQ
B +O(Vµ2

B)

SQσ
3
Q = VχQ

3 (µB) = VµB

[
χBQ
13 + χQS

31

dµS

dµB
+ χQ

4

dµQ

dµB

]
+O(Vµ3

B)

κσ4
Q = VχQ

4 (µB) = VχQ
B +O(Vµ2

B)

To leadig order, at infinitesimal µB :

MQ

µBσ2
Q

=
χBQ
11 + χQS

11
dµS
dµB

+ χQ
2

dµQ

dµB

χQ
2

;
SQσ

3
Q

MQ
=
χBQ
13 + χQS

31
dµS
dµB

+ χQ
4

dµQ

dµB

χBQ
11 + χQS

11
dµS
dµB

+ χQ
2

dµQ

dµB



Extending to imaginary µB
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Contours of constant fluctuations on the phase diagram

As a realistic example we take the preliminary STAR proton and electric charge

fluctuation data [1309.5681,1402.1558].√
sNN [GeV] 200 62.4 39 27 19.6

σ2
p/Mp 7.10(1)(138) 2.46(0)(11) 1.70(0)(5) 1.31(0)(2) 1.12(0)(1)

σ2
Q/MQ 80.2(2)(1) 27.32(7)(3) 17.46(3)(1) 12.71(3)(1) 8.95(3)(1)
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Higher order fluctuations vs expermient

Lattice can calculate the baryon and electric charge skewness at small
chemical potentials. Here we show the preliminary Wupperal-Budapest
results together with STAR data.
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STAR’s new preliminary proton skewness is not compatible with the low

temperatures from the M/σ2 analysis.



Summary and outlook

Lattice QCD is making good progress in exploring thermodynamics
(Tc , equation of state) at small and intermediate chemical
potentials (µB/T < 2). Sufficient range for most RHIC energies

Low order fluctuations are well established, even at small µB , higher
order fluctuations are subject of current research.

Higher order fluctuations can be explored with large statistics µB = 0
simulations (BNL-Bielefeld way) or with studying the response to
imaginary chemical potential (Wuppertal-Budapest strategy).

Imaginary chemical poten-
tials are also useful for preci-
sion tests of the HRG model
and various spectra.
Here: The pressure con-
tribution of |S |=0,1,2,3
mesons and baryons.
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Other uses of fluctuations
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Search for open charm bound states above Tc

pC (T , µC , µB) = pC
q (T ) cosh (µ̂C + µ̂B/3) +
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B (T ) cosh (µ̂C + µ̂B) + pC

M(T ) cosh (µ̂C ) ,

[Mukherjee et al 1509.08887]

Search for resonances not covered by the Particle Data Book below Tc
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Non-staggered finite temperature results

Quark number susceptibilities

anisotropic wilson mπ = 392 MeV

[FASTSUM 1309.6253,1412.6411]

isotropic wilson in continuum
mπ = 545, 440, 285 MeV.
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Caveats

Effects due to volume variation because of finite centrality bin width

Experimentally corrected by centrality-bin-width correction method

Finite reconstruction efficiency

Experimentally corrected based on binomial distribution
[A. Bzdak, V. Koch, PRC (2012)]

Spallation protons

Experimentally removed with proper cuts in pT

Canonical vs Grand Canonical ensemble

Experimental cuts in the kinematics and acceptance
[V. Koch, S. Jeon, PRL (2000)]

Proton multiplicity distributions vs baryon number fluctuations

Numerically very similar once protons are properly treated
[M. Asakawa and M. Kitazawa], [PRC (2012), M. Nahrgang et al., 1402.1238]

Final-state interactions in the hadronic phase [ J.Steinheimer et al., PRL (2013)]

Consistency between different charges = fundamental test



2 + 1 + 1 flavor equation of state – lattice data

For low temperatures I (T )/T 4 is calculated using vacuum subtraction.

For higher temperatures [I (T )− I (T/2)]/T 4 is calculated and
continuum extrapolated.
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The final trace anomaly is calculated from the continuum extrapolated
terms using the formula

I (T )

T 4
=

n−1∑

k=0

2−4k I (T/2k)− I (T/2k+1)

(T/2k)4
+ 2−4n I (T/2n)

(T/2n)4


