GHP2017 @ Washington DC Feb. 1st, 2017 Anomalous Chiral Transport In High Energy Nuclear Collisions

Jinfeng Liao

Indiana University, Physics Dept. & CEEM

Research Supported by NSF & DOE

Publication of Important Nuclear/Particle Data

Chinese Physics C	
Table of contents	
Volume 36 Number 12, December 2012 (Previous issue) Next issue)	
View all abstracts	
Ine Nubase2U12 evaluation of nuclear properties	1157
+ View abstract	
The Ame2012 atomic mass evaluation	1287
G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Heitter + View abstract I View article DPDF	
The Ame2012 atomic mass evaluation	1603
M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu and B. Pfeiffer	
🕂 View abstract 🖉 View article 📂 PDF	

PDG Review of Particle Physics 2016 (& 2014) @ CPC

Atomic Mass Evaluation 2017 & 2012 @ CPC

Chinese Physics C

An international journal for high energy and nuclear physics

cpc.ihep.ac.cn iopscience.org/cpc

- 2015 Impact Factor 3.761
- A SCOAP³ participating journal free Open Access publication for qualifying articles
- Average 35 days to first decision, 90 days to acceptance (2016)
- Fast-track publication for selected articles
- Subscriptions at 2800 institutions worldwide
- Free English editing on all accepted articles
- Publishers of the 2014 and 2016 Particle Data Group Review of Particle Physics
- Publishers of the 2012 and 2017 Atomic Mass Evaluation

Nuclear Matter: At the Heart of All Matter

The physical world has a hierarchy of structures.

A Map of the Extreme Matter

This talk will focus on the "hot frontier".

QCD & Chiral Symmetry

Different frontiers are intrinsically connected: they are described by the SAME QCD, with the SAME set of fundamental symmetries.

* Spontaneously broken chiral symmetry in the vacuum is a fundamental property of QCD.

* A chirally symmetric quark-gluon plasma at high temperature is also a fundamental property of QCD!

"Little Bang" in High Energy Nuclear Collision

* Quark-gluon plasma (QGP) is created in such collisions.
* It is PRIMORDIALLY HOT ~ trillion degrees ~ early universe.
* Is chiral symmetry restored?

From Chiral Anomaly to Chiral Magnetic Effect

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

Classical symmetry:

$$egin{aligned} \mathcal{L} &= i\Psi\gamma^\mu\partial_\mu\Psi\ \mathcal{L} & o iar{\Psi}_L\gamma^\mu\partial_\mu\Psi_L + iar{\Psi}_R\gamma^\mu\partial_\mu\Psi_R\ &\Lambda_A:\Psi o e^{i\gamma_5 heta}\Psi\ &\partial_\mu J_5^\mu &= 0 \end{aligned}$$

Broken at QM level:

$$\begin{aligned} \partial_{\mu}J_{5}^{\mu} &= C_{A}\vec{E}\cdot\vec{B} \\ \frac{dQ_{5}}{dt} &= \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B} \end{aligned}$$

* C_A is universal anomaly coefficient* Anomaly is intrinsically QUANTUM effect

[e.g. pi0—> 2 gamma]

Landau Levels in Magnetic Field

 $E_n^2 = p_z^2 + 2nB$

Lowest-Landau-Level (LLL): LLL is chiral!

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

$$\partial_{\mu}J_{5}^{\mu} = C_{A}\vec{E}\cdot\vec{B}$$

 $dQ_{5}/dt = \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B}$

$$J_5^\mu = J_R^\mu - J_L^\mu$$

Illustrated with Lowest-Landau-Level (LLL) picture: the LLL is chiral!

From Micro. Laws To Macro. Phenomena

Micro. Laws: Symmetry; Lagrangian;

Conservation laws;

Macro. Phenomena:

Thermodynamics; Phase transitions; Transport; Hydrodynamics;

Would chiral anomaly, usually considered at microscopic level, manifest itself MACROSCOPICALLY in a many-body system of chiral fermions? If so, how?

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

 $\mathcal{L} \to \mathcal{L}$

Emergence in Hydrodynamic Context

Symmetry	Micro. Conservation Law	Emergent Macro. Hydro
translational invariance	energy and momentum conserved	$\partial_{\mu}T^{\mu\nu} = 0$
phase invariance	charge conserved	$\partial_{\mu}J^{\mu}=0$

WHAT ABOU "HALF"-SYMMETRY??? i..e ANOMALY?!

- classical symmetry that is broken in quantum theory

Anomalous Transport: Chiral Magnetic Effect

* The Chiral Magnetic (CME) is an anomalous transport current

In NORMAL environment, this will NOT happen. For this to occur: need a <u>P- and CP-Odd environment!</u>

A (convenient) way to quantify IMBALANCE in the numbers of LH vs RH chiral fermions -> CHIRAL MATTER!

Such imbalance can be generated through chiral anomaly coupled with E-dot-B (e.g. topological fluctuations of QCD).

So How Does CME Work?

One may recognize deep connection between CME & anomaly.

$$\partial_{\mu}J_{5}^{\mu} = C_{A}\vec{E}\cdot\vec{B}$$

 $\vec{\mathbf{J}} = \sigma_{5}\mu_{5}\vec{\mathbf{B}}$

The CME conductivity is

- * fixed entirely by quantum anomaly
- * T-even, non-dissipative

* universal from weak to strong coupling

We need to modify hydrodynamics!

Hydrodynamics That Knows Left & Right

Microscopic quantum anomaly emerges as macroscopic anomalous hydrodynamic currents!

[Fluid rotation induces similar effects as magnetic field]

CME in Heavy Ion Collisions

Exciting Progress: See Recent Reviews

Prog. Part. Nucl. Phys. 88, 1 (2016)[arXiv:1511.04050 [hep-ph]].

J. Liao, Pramana 84, no. 5, 901 (2015) [arXiv:1401.2500 [hep-ph]].

The Setup of Heavy Ion Collision

The quark-gluon plasma is a type of CHIRAL MATTER, with (approximately) chiral quarks.

Can we observe CME??

$$\vec{\mathbf{J}} = \sigma_5 \mu_5 \vec{\mathbf{B}}$$

Strongest B field (and strong E field as well) naturally arises! [Kharzeev,McLerran,Warringa;Skokov,et al; Bzdak-Skokov; Deng-Huang; Bloczynski-Huang-Zhang-Liao; Skokov-McLerran;Tuchin; ...]
"Out-of-plane" orientation (approximately)

A simple estimate of initial axial charge density: [c.f. Hirono, Hirano, Kharzeev, 2014; Mueller, Schaefer, 2010; Kharzeev, Krasnitz, Venugopalan]

$$\sqrt{\langle n_5^2 \rangle} \simeq \frac{Q_s^4 \left(\pi \rho_{tube}^2 \tau_0 \right) \sqrt{N_{coll}}}{16 \pi^2 A_{overlap}}$$

[Kharzeev 2004; Kharzeev, McLerran, Warringa, 2008;...]

Summarizing Exp. Search Status

Main challenge: flow-driven background v.s. CME signal

Vary v2 for fixed B: AuAu v.s. UU; Varying event-shape; 2-component subtraction.

Vary B for fixed v2: Isobaric collisions with RuRu v.s. ZrZr Our best guess for now:

Encouraging experimental evidence for CME in QGP — can we quantitatively compute CME signal?

The Flowing Quark-Gluon Plasma

$$\frac{\mathrm{dN}}{\mathrm{dP}_{\mathrm{t}}\,\mathrm{d}\phi} = \frac{\mathrm{dN}}{\mathrm{dP}_{\mathrm{t}}} \left[1 + 2\,\mathbf{v}_2\,\left(\mathbf{P}_{\mathrm{t}}\right)\,\mathrm{cos}\,\left(2\,\phi\right)\,+\,\ldots\,\right]$$

* Nearly perfect fluidity: mapping fine details of initial conditions $1 \le 4\pi (\eta/s)_{
m QGP} \le 2.5$ the smallest among known substances

* The QGP's rapid expansion is well described by relativistic viscous fluid dynamics.

* Chiral fermion currents are "carried" by the bulk flow.

$$\begin{split} D_{\mu}J_{R}^{\mu} &= + \frac{N_{c}q^{2}}{4\pi^{2}} E_{\mu}B^{\mu} \qquad D_{\mu}J_{L}^{\mu} = - \frac{N_{c}q^{2}}{4\pi^{2}} E_{\mu}B^{\mu} \\ J_{R}^{\mu} &= n_{R} u^{\mu} + v_{R}^{\mu} + \frac{\sigma}{2} E^{\mu} + \begin{pmatrix} N_{c}q \\ 4\pi^{2} \\ \mu_{R} \\ N_{c}q \\ 4\pi^{2} \\ \mu_{L} \\$$

B field + $\mu_A \Rightarrow$ charge separation dN_±/d $\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + ...$

$$B(\tau) = \frac{B_0}{1 + (\tau/\tau_B)^2}$$
$$\tau_B = 0.6 \text{fm/c}$$

$$\sqrt{\langle n_5^2 \rangle} \simeq \frac{Q_s^4 \left(\pi \rho_{tube}^2 \tau_0 \right) \sqrt{N_{coll.}}}{16 \pi^2 A_{overlap}}$$

With realistic initial axial charge density and short magnetic lifetime, data could be described.

A Wealth of Anomalous Chiral Transport Phenomena

Chiral Magnetic Wave (CMW) Wave: propagating "oscillations" of two coupled quantities e.g. sound wave (pressure & density); EM wave (E & B fields)

Chiral Magnetic Wave

[Kharzeev, Yee, 2010; Burnier, Kharzeev, JL, Yee, 2011]

CMW Induced Flow Splitting *CMW —> charge quadrupole of QGP —> elliptic flow splitting* [Burnier, Kharzeev, JL, Yee, PRL2011; and arXiv: 1208.2537]

Chiral Vortical Effect

Interesting analogy between magnetic field and fluid rotation!

* Collective excitations: Chiral Vortical Wave

* Sizable angular momentum and fluid vorticity in QGP.

Non-Equilibrium CME: Chiral Kinetic Theory Chiral fermions out-of-equilibrium: how anomaly shows up? [Son, Yamamoto; Stephanov, Yin; Chen, Son, Stephanov,

Yee, Yin; Gao, Liang, Pu, Wang, Wang;...: 2012~2015]

Definite chirality: Spin "rotates" with momentum —> Berry Phase

- $p \lesssim \sqrt{B}$ $J_{anom} \sim (E \cdot B)b$ * CKT: Introducing O(h-bar) quantum effect
- * Correctly accounting for anomaly

 $b = \frac{p}{2|p|^2}$

classical region

Berry curvature

anom. velocity

 $\dot{x} - v - \widetilde{\dot{p} \times b} = 0;$

 $\dot{p} - E - \dot{x} \times B = 0$

Non-Equilibrium CME: Classical Statistical Field

Dirac equation knows anomaly!

Chiral Magnetic Effect:

t:
$$\vec{j}_v \propto j_a^0 \vec{B}$$

axial charge density

 Solve operator Dirac equation in the presence of SU(N) and U(1) gauge fields

 $i\gamma^0\partial_t\hat{\psi} = (-iD\!\!\!/_W^s + m)\hat{\psi}$

CME can be automatically generated during the fermion production process.

[Mueller, Schlichting, Mace, Sharma, 1612.02477; Fukushima, 2015]

New Territory of CME Physics: 3D Semimetals

The anomalous transport phenomena are universal phenomena across boundaries of disciplines, encompassing a wide range of chiral systems!

One should expect to see CME in semimetals — CME in fact becomes a signal of chiral fermions!

New Territory of CME Physics: Table-Top Exp.

$$N_{L,R} \approx \frac{e^2}{4\pi^2\hbar^2 c} \vec{E} \cdot \vec{B}\tau_v$$

$$\mu \equiv \mu_L - \mu_R \sim \vec{E} \cdot \vec{B}\tau_v$$

$$\vec{J}_{CME} = \frac{e^2}{2\pi^2} \mu \vec{B}$$

$$J_{CME}^i = \sigma_{CME}^{ik} E^k; \quad \sigma_{CME}^{zz} \sim B^2$$

$$\sigma \equiv \sigma_0 + \sigma_{CME} = + \sigma_0 + a(T)B^2$$

Chiral magnetic effect in ZrTe₅

Qiang Li^{1*}, Dmitri E. Kharzeev^{2,3*}, Cheng Zhang¹, Yuan Huang⁴, I. Pletikosić^{1,5}, A. V. Fedorov⁶, R. D. Zhong¹, J. A. Schneeloch¹, G. D. Gu¹ and T. Valla^{1*}

arXiv:1412.6543 [cond-mat.str-el]

Summary & Outlook

Summary

Microscopic chiral anomaly emerges as anomalous chiral transport in chiral matter (e.g. QGP): Chiral Magnetic Effect, Chiral Magnetic Wave, Vortical Effects, ...

Theoretical frameworks have been developed for anomalous chiral transport: anomalous hydro; chiral kinetic theory; classical statistical field theory

Anomalous-Viscous Fluid Dynamics, with reasonable parameters and initial conditions, predicts CME signals that could quantitatively explain data.

Toward Completion of RHIC Science Mission

RHIC is a unique test ground for rich, novel QCD phenomena.

RHIC Run Plan

Up to 10% variation in B field, thus ~20% shift of CME signal!

Predictions for Isobaric Collisions

Isobaric collisions will be a crucial test!

Toward Physics of Beam Energy Scan

* Establishing a chiral QGP at higher energy via anomalous chiral effects * Searching for chiral critical point & 1st-order transition at lower energy

Stay tuned for exciting news in the near future!

Beam Energy Scan Theory (BEST) Collaboration: BNL, IU, LBNL, McGill U, Michigan State U, MIT, NCSU, OSU, Stony Brook U, U Chicago, U Conn, U Huston, UIC