Test Fundamental Symmetries via $\pi^{0}, \eta, \eta^{\prime}$ Decays

Liping Gan University of North Carolina Wilmington

Outline

1. Introduction
\longrightarrow challenges in physics
2. Primakoff experiments on $\pi^{0}, \eta, \eta^{\prime \prime}$
\longrightarrow precision tests confinement QCD symmetries
3. JLab Eta Factory (JEF) Program for rare η decays
\longrightarrow search for BSM new physics
4. Summary

Challenges in Physics

Confinement QCD

- QCD confinement and its relationship to the dynamical chiral symmetry breaking

New physics beyond the Standard Model (SM)

- Dark matter and dark energy
- New sources of CP violation
> "As far as I see, all priori statements in physics have their origin in symmetry".

> By H. Weyl

QCD Symmetries and Light Mesons

\square QCD Lagrangian in Chiral limit $\left(m_{q} \rightarrow 0\right)$ is invariant under:
$S U_{L}(3) \times S U_{R}(3) \times U_{A}(1) \times U_{B}(1)$

- Chiral symmetry $S U_{L}(3) \times S U_{R}(3)$ spontaneously breaks to $S U(3)$
> 8 Goldstone Bosons (GB)
$\square U_{A}(1)$ is explicitly broken:
(Chiral anomalies)
$>\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right), \Gamma(\eta \rightarrow \gamma \gamma), \Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$
> Mass of η_{0}
- $S U_{L}(3) \times S U_{R}(3)$ and $S U(3)$ are explicitly broken:
> $G B$ are massive

$>$ Mixing of $\pi^{0}, \eta, \eta^{\prime}$
The π^{0}, n, n^{\prime} system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Primakoff Program at JLab $6 \& 12 \mathrm{GeV}$

Precision measurements of electromagnetic properties of $\pi^{0}, \eta, \eta^{\prime \prime}$ via Primakoff effect.

a) Two-Photon Decay Widths:

1) $\Gamma\left(\pi^{0} \rightarrow \psi\right)$ © 6 GeV
2) $\Gamma(\eta \rightarrow \gamma)$
3) $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$

Input to Physics:
$>$ precision tests of Chiral symmetry and anomalies
$>$ determination of light quark mass ratio
> $\eta-\eta^{\prime}$ mixing angle

b) Transition Form Factors at low Q^{2} (0.001-0.5 $\mathrm{GeV}^{2} / \mathrm{c}^{2}$): $\mathrm{F}\left(\gamma \gamma^{\star} \rightarrow \pi^{0}\right), \mathrm{F}\left(\gamma \gamma^{*} \rightarrow \eta\right), \mathrm{F}\left(\gamma \gamma^{\star} \rightarrow \eta^{\prime}\right)$

Input to Physics:
$>\pi^{0}, \eta$ and η^{\prime} electromagnetic interaction radii
$>$ is the η^{\prime} an approximate Goldstone boson?
$>$ inputs to $a_{\mu}(H L b L)$ calculations

Axial Anomaly Determines π^{0} Lifetime

- $\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.

The chiral anomaly prediction is exact for massless quarks:
$\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}$

Axial Anomaly Determines π^{0} Lifetime

- $\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.
- The chiral anomaly prediction is exact for massless quarks: $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{2}^{2} m_{3}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}$ 的 k_{1}
- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ is one of the few quantities in confinement region that QCD can calculate precisely at $\sim 1 \%$ level to higher orders!

Axial Anomaly Determines π^{0} Lifetime

$-\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.

- The chiral anomaly prediction is exact for massless quarks: pun

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}
$$

- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ is one of the few quantities in confinement region that QCD can calculate precisely at $\sim 1 \%$ level to higher orders!
$>$ Corrections to the chiral anomaly prediction: Calculations in NLO ChPT:
$\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.10 \mathrm{eV} \pm 1.0 \%$
(J. Goity, et al. Phys. Rev. D66:076014, 2002) $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.06 \mathrm{eV} \pm 1.0 \%$
(B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \psi\right)=8.09 \mathrm{eV} \pm 1.3 \%$
(K. Kampf et al. Phys. Rev. D79:076005, 2009)

Axial Anomaly Determines π^{0} Lifetime

- $\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.
- The chiral anomaly prediction is exact for massless quarks: pur

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}
$$

- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ is one of the few quantities in confinement region that QCD can calculate precisely at $\sim 1 \%$ level to higher orders!
$>$ Corrections to the chiral anomaly prediction: Calculations in NLO ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.10 \mathrm{eV} \pm 1.0 \%$
(J. Goity, et al. Phys. Rev. D66:076014, 2002) $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.06 \mathrm{eV} \pm 1.0 \%$
(B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \psi\right)=8.09 \mathrm{eV} \pm 1.3 \%$
(K. Kampf et al. Phys. Rev. D79:076005, 2009)
> Calculations in QCD sum rule:
- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.93 \mathrm{eV} \pm 1.5 \%$
(B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)

Axial Anomaly Determines π^{0} Lifetime

- $\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.
- The chiral anomaly prediction is exact for massless quarks: pun

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{e}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}
$$

- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ is one of the few quantities in confinement region that QCD can calculate precisely at $\sim 1 \%$ level to higher orders!
$>$ Corrections to the chiral anomaly prediction: Calculations in NLO ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.10 \mathrm{eV} \pm 1.0 \%$
(J. Goity, et al. Phys. Rev. D66:076014, 2002) $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.06 \mathrm{eV} \pm 1.0 \%$
(B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \psi\right)=8.09 \mathrm{eV} \pm 1.3 \%$
(K. Kampf et al. Phys. Rev. D79:076005, 2009)
> Calculations in QCD sum rule:
- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.93 \mathrm{eV} \pm 1.5 \%$
(B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)

Precision measurement of $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ at the percent level will provide a stringent test of low energy QCD.

Axial Anomaly Determines π^{0} Lifetime

$-\pi^{0} \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.

- The chiral anomaly prediction is exact for massless quarks: pun

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2} N_{e}^{2} m_{\pi}^{3}}{576 \pi^{3} F_{\pi}^{2}}=7.725 \mathrm{eV}
$$

- $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ is one of the few quantities in confinement region that QCD can calculate precisely at $\sim 1 \%$ level to higher orders!
$>$ Corrections to the chiral anomaly prediction: Calculations in NLO ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.10 \mathrm{eV} \pm 1.0 \%$
(J. Goity, et al. Phys. Rev. D66:076014, 2002) $\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.06 \mathrm{eV} \pm 1.0 \%$
(B. Ananthanarayan et al. JHEP 05:052, 2002) Calculations in NNLO SU(2) ChPT: $\square \Gamma\left(\pi^{0} \rightarrow \gamma \psi\right)=8.09 \mathrm{eV} \pm 1.3 \%$
(K. Kampf et al. Phys. Rev. D79:076005, 2009)
> Calculations in QCD sum rule:
$\square \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.93 \mathrm{eV} \pm 1.5 \%$
(B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)

Precision measurement of $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ at the percent level will provide a stringent test of low energy QCD.

Primakoff Method

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:

$$
\left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E)
$$

- Coherent process

Primakoff Method

$$
\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}=\Gamma_{\gamma r} \frac{8 \alpha Z^{2}}{m_{\pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}}\left|F_{e . m .}(Q)\right|^{2} \sin ^{2} \theta_{\pi}
$$

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:

$$
\left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E)
$$

- Coherent process

Primakoff Method

$$
\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}=\Gamma_{w} \frac{8 \alpha Z^{2}}{m_{\pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}}\left|F_{e, m}(Q)\right|^{2} \sin ^{2} \theta_{\pi}
$$

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:

$$
\left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E)
$$

- Coherent process

Primakoff Method

$$
\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}=\Gamma_{w} \frac{8 \alpha Z^{2}}{m_{\pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}}\left|F_{e, m}(Q)\right|^{2} \sin ^{2} \theta_{\pi}
$$

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:

$$
\left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E)
$$

- Coherent process

Primakoff Method

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:

$$
\begin{aligned}
& \left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E) \\
& \text { - Coherent process }
\end{aligned}
$$

Primakoff Method

$$
\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}=\Gamma_{r \gamma} \frac{8 \alpha Z^{2}}{m_{\pi}^{3}} \frac{\beta^{3} E^{4}}{Q^{4}}\left|F_{e . m .}(Q)\right|^{2} \sin ^{2} \theta_{\pi}
$$

Challenge: Extract the Primakoff amplitude

Requirement:

> Photon flux
> Beam energy
> π^{0} production angle resolution
> Compact nuclear target

Features of Primakoff cross section:

- Peaked at very small forward angle:

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{\text {peak }} \propto \frac{m^{2}}{2 E^{2}}
$$

- Beam energy sensitive:
$\left\langle\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right\rangle_{\text {peak }} \propto E^{4}, \int d \sigma_{\mathrm{Pr}} \propto Z^{2} \log (E)$
- Coherent process

PrimEx Experimental Setup

- JLab Hall B high resolution, high intensity photon tagging facility

New pair spectrometer for photon flux control at high beam intensities
1% accuracy has been achieved

The First Experiment: PrimEx-I (2004)

Theoretical angular distributions smeared with experimental resolutions are fit to the data on two nuclear targets to extract $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$

The First Experiment: PrimEx-I Result

The First Experiment: PrimEx-I Result

PrimEx-I improved the precision of PDG average by more than a factor of two

Preliminary PrimEx-II Results from Analysis (L. Ma, Y. Zhang and I. Larin)

Experiments

Measurement of $\Gamma(\eta \rightarrow \gamma \psi)$ in Hall D at 12 GeV

$>$ Incoherent tagged photon beam ($\sim 10.5-11.5 \mathrm{GeV}$)
$>$ Pair spectrometer and a TAC detector for the photon flux control
$>30 \mathrm{~cm}$ liquid Hydrogen and ${ }^{4} \mathrm{He}$ targets ($\sim 3.6 \%$ r.l.)
$>$ Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$ decay photons
$>$ CompCal and FCAL to measure well-known Compton scattering for control of overall systematic uncertainties.
$>$ Solenoid detectors and forward tracking detectors (for background rejection)

Physics Impact of $\Gamma(\eta \rightarrow \gamma \gamma)$ Measurement

1. Resolve long standing discrepancy between collider and Primakoff measurements:

2. Extract $\eta-\eta$ ' mixing angle:

3. Improve all partial decay widths in the η-sector

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^{2}=\frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}, \quad$ where $\hat{m}=\frac{1}{2}\left(m_{u}+m_{d}\right)$
$\eta \rightarrow 3 \pi$ decays through isospin violation: $A=\left(m_{u}-m_{d}\right) A_{1}+\alpha_{e m} A_{2}$
$\Rightarrow \alpha_{e m}$ is small

- Amplitude: $A(\eta \rightarrow 3 \pi)=\frac{1}{Q^{2}} \frac{m_{K}^{2}}{m_{\pi}^{2}}\left(m_{\pi}^{2}-m_{K}^{2}\right) \frac{M(s, t, u)}{3 \sqrt{3} F_{\pi}^{2}}$

H. Leutwyler Phys. Lett., B378, 313 (1996)

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^{2}=\frac{m_{s}^{2}-\widehat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}, \quad$ where $\hat{m}=\frac{1}{2}\left(m_{u}+m_{d}\right)$
$\eta \rightarrow 3 \pi$ decays through isospin violation: $A=\left(m_{u}-m_{d}\right) A_{1}+\alpha_{e m} A_{2}$
$\Rightarrow \alpha_{e m}$ is small
$>$ Amplitude: $A(\eta \rightarrow 3 \pi)=\frac{1}{Q^{2}} \frac{m_{K}^{2}}{m_{\pi}^{2}}\left(m_{\pi}^{2}-m_{K}^{2}\right) \frac{M(s, t, u)}{3 \sqrt{3} F_{\pi}^{2}}$

- Critical input to extract Cabibbo Angle, $V_{u s}=\sin \left(\theta_{c}\right)$ from kaon or hyperon decays.
- $V_{u s}$ is a cornerstone for test of CKM unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

H. Leutwyler Phys. Lett., B378, 313 (1996)

Transition Form Factors $F\left(\gamma \psi^{*} \rightarrow p\right)$) $\left(a+\right.$ low $\left.Q^{2}: 0.001-0.5 G V^{2} / c^{2}\right)$

- Direct measurement of slopes
- Interaction radii: $F_{y y^{*} p}\left(Q^{2}\right) \approx 1-1 / 6 \cdot\left\langle r^{2}\right\rangle_{p} Q^{2}$
- ChPT for large N_{c} predicts relation between the three slopes. Extraction of $O\left(p^{6}\right)$ low-energy constant in the chiral Lagrangian
- Input for hadronic light=by=light calculations in muon (g-2)
$w_{f}\left(Q_{1}, Q_{2}\right)$
$\mathrm{w}_{\mathrm{g}_{1}}\left(\mathrm{M}_{\mathrm{r}}, \mathrm{O}_{1}, \mathrm{O}_{2}\right)$

Phys.Rev.D65,073034

η is a unique probe for new physics

- The most massive member in the octet of pseudoscalar Goldstone mesons (547.9 MeV/c2) \longrightarrow Many open decay channels Sensitive to symmetry breakings

- n decay width $\Gamma_{n}=1.3 \mathrm{KeV}$ is narrow (relative to $\Gamma_{\omega}=8.5 \mathrm{MeV}$) \longrightarrow The lowest orders of n decays are filtered out, enhancing the contributions from higher orders (by a factor of ~7000 compared to ω decays).
- Eigenstate of $P, C, C P$, and $G: I^{G} J^{P C}=0^{+} 0^{-+}$
\longrightarrow Study violations of discrete symmetries
- The n decays are flavor-conserving reactions effectively free of SM backgrounds for new physics search.

JLab Eta Factory (JEF) Experiment

Simultaneously measure n decays: $n \rightarrow \pi^{0} \gamma \gamma, n \rightarrow 3 \gamma, \ldots$

- n produced on LH_{2} target with 9-11.7 GeV tagged photon beam: $\gamma+p \rightarrow \eta+p$
- Reduce non-coplanar backgrounds by detecting recoil p's with GlueX detector ($\varepsilon \sim 75 \%$)
- Upgraded Forward Calorimeter with High resolution, high granularity PbWO_{4} insertion (FCAL-II) to detect multi-photons from rare n decays

World competition in n decays

Fixed-target

hadroproduction

Crystall Ball at MAMI Crystal Ball

CBELSA/TAPS at ELSA

JEF at JLab

World competition in η decays

KLOE-2 at DA ϕ NE
$\mathbf{e}^{+} \mathbf{e}^{-}$
Collider

Fixed-target
BESIII at BEPCII
 η-facilities

World Competition in η Decays

KLOE-2 at DA ϕ NE
$\mathbf{e}^{+} \mathbf{e}^{-}$
Collider

BESIII at BEPCII

High energy η-facility

JEF at JLab

Filter Background with η Energy Boost ($\eta \rightarrow \pi^{0} \eta \gamma$)

 A2 at MAMI (Phys.Rev. C90 (2014) 025206): $\gamma p \rightarrow n p\left(E_{\gamma}=1.5 \mathrm{GeV}\right)$

JLab:
$\gamma p \rightarrow n p\left(E_{\gamma}=9-11.7 \mathrm{GeV}\right)$

Overview of the JLab Eta Factory (JEF) Project

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^{0} 2 \gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	χ PTh at $\mathcal{O}\left(p^{6}\right)$	4
$\gamma+B$	beyond SM	leptophobic dark boson	4
$3 \pi^{0}$	$(32.6 \pm 0.2) \%$	$m_{u}-m_{d}$	6
$\pi^{+} \pi^{-} \pi^{0}$	$(22.7 \pm 0.3) \%$	$m_{u}-m_{d}$, CV	2
3γ	$<1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			4
4γ	$<2.8 \times 10^{-4}$	$<10^{-11}[112]$	4
$2 \pi^{0}$	$<3.5 \times 10^{-4}$	CPV, PV	4
$2 \pi^{0} \gamma$	$<5 \times 10^{-4}$	CV, CPV	5
$3 \pi^{0} \gamma$	$<6 \times 10^{-5}$	CV, CPV	6
$4 \pi^{0}$	$<6.9 \times 10^{-7}$	CPV, PV	8
$\pi^{0} \gamma$	$<9 \times 10^{-5}$	CV,	3
2γ	$(39.3 \pm 0.2) \%$	anomaly, $\eta-\eta^{\prime}$ mixing	
normalization:		PR12-10-011	2
$2 \gamma g . ~ M o m . ~ v i o l . ~$			

Main physics goals:

1. Search for a leptophobic dark gauge boson (B).
2. Directly constrain CVPC new physics
3. Probe interplay of VMD \& scalar resonances in ChPT.
4. Improve the light quark mass ratio

FCAL-II is required for the rare decays

Search for Dark Forces

$S M$ based on $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ gauge symmetry. Are there any additional gauge symmetries? Look for new gauge bosons.

Exploring the basic scenarios...

"Vector Portal" to Dark Sector

1. Dark photon A^{\prime}

$\begin{array}{c}\text { Leptophillic models } \\ \text { Gauged lepton symmetry }\end{array}$	$\begin{array}{c}\text { Dark photon model, } \\ \text { Gauged } B-L\end{array}$
Dark photon searches (di-lepton resonances)	

Blind spot for dark photon searches

Leptophobic models
Gauged baryon number
Quark coupling
2. Leptophobic B-boson (dark ω, γ_{B}, or Z^{\prime}):

1 $\frac{1}{3} g_{B} \bar{q} \gamma^{\mu} q B_{\mu}$ Gauged baryon number symmetry $\cup(1)_{B}$

Striking Signature for B-boson in $\eta \rightarrow \pi^{0} \gamma \gamma$

- B production: A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$
\eta \rightarrow B \gamma \operatorname{decay}\left(m_{B}<m_{\eta}\right)
$$

Triangle diagram

- B decays: $B \rightarrow \pi^{0} \gamma$ in $140-620 \mathrm{MeV}$ mass range

$\eta \rightarrow \gamma B \rightarrow \gamma+\pi^{0} \gamma$
Search for a resonance peak of $\pi^{0} \gamma$ for $m_{B} \sim 140-550 \mathrm{MeV}$
S. Tulin, Phys.Rev., D89, 14008 (2014)
$\bullet \Gamma\left(\eta \rightarrow \pi^{0} \gamma \gamma\right) \sim 0.3 e V$
highly suppressed SM background

JEF Experimental Reach ($\eta \rightarrow \mathrm{B} \gamma \rightarrow \pi^{0} \gamma \gamma$)

Summary

\square The π^{0}, n and n^{\prime} decays are sensitive probes for the fundamental symmetries.

- A comprehensive Primakoff program has been developed at JLab to measure $\Gamma(p \rightarrow \gamma)$ and $F\left(\gamma \gamma^{*} \rightarrow p\right)$ of π^{0}, n and η^{\prime} to test the confinement QCD symmetries.
> tests of chiral symmetry and anomalies
> light quark mass ratio and $\eta-\eta^{\prime}$ mixing angle
$>\pi^{0}, \eta$ and η^{\prime} electromagnetic interaction radii
$>$ Inputs for $\mathrm{a}_{\mu}(\mathrm{HLbL})$ calculations
\square The JEF experiment will measure the rare η decays as well as nonrare decays with low experimental backgrounds to test the SM symmetries and search for BSM new physics.
> Probe a leptophobic dark B-boson in 140-550 MeV range via $\eta \rightarrow B \gamma \rightarrow \pi^{0} \gamma \gamma$
$>$ Directly constrain CVPC new physics via $\eta \rightarrow 3 \gamma$ and other C-violating channels
\Rightarrow A clean determination of the light quark mass ratio via $\eta \rightarrow 3 \pi$
$>$ Test the role of scalar dynamics in ChPT through $\eta \rightarrow \pi^{0} \gamma \gamma$

Verification of Overall Systematical Uncertainties

$\square \gamma+e \rightarrow \gamma+e$ Compton cross section measurement

$\square e^{+} e^{-}$pair-production cross section measurement:

Challenges in the $\Gamma(\eta \rightarrow \psi \psi)$ Experiment

Compared to π^{0} :

$>\eta$ mass is a factor of 4 larger than π^{0} and has a smaller cross section

$$
\left(\frac{d \sigma_{\mathrm{Pr}}}{d \Omega}\right)_{\text {peak }} \propto \frac{E^{4}}{m^{3}}
$$

$>$ larger overlap between Primakoff and hadronic processes;

$$
\left\langle\theta_{\mathrm{Pr}}\right\rangle_{p e a k} \propto \frac{m^{2}}{2 E^{2}} \quad \theta_{N C} \propto \frac{2}{E \cdot A^{1 / 3}}
$$

$>$ larger momentum transfer (coherency, form factors, FSI,...)

SM Allowed $\eta \rightarrow \pi^{0} \gamma \gamma$

A rare window to probe interplay of VMD \& scalar resonances in ChPT to calculate $O\left(p^{6}\right)$ LEC's in the chiral Lagrangian (J. Bijnens, ralk at AFCI workshop)

- The major contributions to $\eta \rightarrow \pi^{0} \gamma \gamma$ are two $O\left(p^{6}\right)$ counter-terms in the chiral Lagrangian \rightarrow an unique probe for the high order ChPT.
L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)
- Shape of Dalitz distribution is sensitive to the role of scalar resonances.

LEC's are dominated by meson resonances
Gasser, Leutwyler 84; Ecler, Gasser, Pich, de Rafael 1989; Donoghue, Ramirez, Valencia 1989

Projected JEF Results on $n \rightarrow \pi^{0} \mid m$

J.N. Ng and D.J. Peters, Phys. Rev. D47, 4939

We measure both BR and Dalitz distribution

- model-independent determination of two LEC's of the $O\left(p^{6}\right)$ counter- terms
- probe the role of scalar resonances to calculate other unknown $O\left(p^{6}\right) L E C$'s

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Class	Violated	Valid
1	$C, P, C T, P T$	$T, C P$
2	$C, P, T, C P, C T, P T$	
3	$P, T, C P, C T$	$C, P T$
4	$C, T, C P, P T$	$P, C T$

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Experimental tests

Class	Violated	Valid
1	$C, P, C T, P T$	$T, C P$
2	$C, P, T, C P, C T, P T$	
3	$P, T, C P, C T$	$C, P T$
4	$C, T, C P, P T$	$P, C T$

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Experimental tests

Class	Violated	Valid
1	$C, P, C T, P T$	$T, C P$
2	$C, P, T, C P, C T, P T$	
3	$P, T, C P, C T$	$C, P T$
4	$C, T, C P, P T$	$P, C T$

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Experimental tests

Class	Violated	Valid
1	$C, P, C T, P T$	$T, C P$
2	$C, P, T, C P, C T, P T$	
3	$P, T, C P, C T$	$C, P T$
4	$C, T, C P, P T$	$P, C T$

P-violating exp., β-decays,
K-, B-, D-meson decays
EDM, $\eta \rightarrow$ even π 's

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Experimental tests

Class	Violated	Valid
1	$C, P, C T, P T$	$T, C P$
2	$C, P, T, C P, C T, P T$	
3	$P, T, C P, C T$	$C, P T$
4	$C, T, C P, P T$	$P, C T$

P-violating exp., β-decays,
K-, B-, D-meson decays
EDM, $\eta \rightarrow$ even π 's
17 C-tests involving
$\eta, \eta^{\prime}, \pi^{0}, \omega, J / \psi$ decays

The Four Classes of C, P, and T Violations Assuming CPT Invariance

B. Nefkens and J. Price, Phys. Scrip., T99, 114 (2002)

Experimental tests

$$
\begin{aligned}
& \text { P-violating exp., } \\
& \beta \text {-decays, } \\
& \text { K-, B-, D-meson decays } \\
& \text { EDM, } \eta \rightarrow \text { even } \pi^{\prime} s \\
& 17 C \text {-tests involving } \eta \text {, } \\
& \eta^{\prime}, \pi, \omega, J / \psi \text { decays }
\end{aligned}
$$

For class 4:
a few tests available
not well tested experimentally in EM and strong interactions less constrained by nEDM and parity-violating experiments. offer a golden opportunity for new physics search.

C Invariance

- Maximally violated in the weak force and is well tested.
- Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (The current constraint: $\Delta \geq 1 \mathrm{GeV}$)
- EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.
(M. Ramsey-Musolf, phys, Rev, D63, 076007 (2001): talk at the AFCI workshop)
C Violating n neutral decays

Final State	Branching Ratio (upper limit)	Gammas in Final State
$3 y$	$<1.6 \cdot 10^{-5}$	
$\pi^{0} y$	$<9 \cdot 10^{-5}$	3
$2 \pi^{0} y$	$<5 \cdot 10^{-4}$	
$3 \gamma \pi^{0}$	Nothing published	5
$3 \pi^{0} y$	$<6 \cdot 10^{-5}$	7
$3 y^{2} \pi^{0}$	Nothing published	

C Invariance

- Maximally violated in the weak force and is well tested.
- Assumed in SM for electromagnetic and strong forces, but it is not experimentally well tested (The current constraint: $\Delta \geq 1 \mathrm{GeV}$)
- EDMs place no constraint on CVPC in the presence of a conspiracy or new symmetry; only the direct searches are unambiguous.
(M. Ramsey-Musolf, phys, Rev, D63, 076007 (2001): talk ar the AFCI workshop)
C Violating n neutral decays

Final State	Branching Ratio (upper limit)	Gammas in Final State
$3 y$	$<1.6 \cdot 10^{-5}$	3
$\pi^{0} Y$	$<9 \cdot 10^{-5}$	5
$2 \pi^{0} y$	$<5 \cdot 10^{-4}$	
$3 \gamma \pi^{0}$	Nothing published	
$3 \pi^{0} Y$	$<6 \cdot 10^{-5}$	
$3 \gamma 2 \pi^{0}$	Nothing published	7

Experimental Improvementon in $n \rightarrow 3 y$

- SM contribution:
$B R(n \rightarrow 3 y)<10^{-19}$ via P-violating weak interaction.
- A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee Phys. Rev.,139, B1965 (1965)
- A calculation due to such new physics by Tarasov suggests: BR $(\eta \rightarrow 3 \gamma)<10^{-2}$
Sov.J.Nucl.Phys.,5,445 (1967)
- A new investigation by M. RamseyMusolf and two Ph.D. students is in progress

Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

Anatomy of CP Violation in $\Gamma\left(M_{\mathrm{C}=+} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

C-odd, P-even

This can be generated by $s-p$ interference of $\left|\left[\pi^{+}(\boldsymbol{p}) \pi^{-}(-\boldsymbol{p})\right]_{I^{0}} \pi^{0}\left(\boldsymbol{p}^{\prime}\right)_{I}\right\rangle$ final states of 0^{-}meson decay. It is linear in a CP-violating parameter.
This contribution cannot be generated by $\bar{\theta}_{\mathrm{QCD}}$!
"C violation" [Lee and Wolienstein, 1965; Lee, 1965, Navenberg, 1965; Bernstein, Feinberg, and Lee, 1965]

> C-even, P-odd

This can be generated by the interference of amplitudes which distinguish $\left|\left[\pi^{-}(\boldsymbol{p}) \pi^{0}(-\boldsymbol{p})\right]_{I} \pi^{+}\left(\boldsymbol{p}^{\prime}\right)_{l}\right\rangle$ from $\left|\left[\pi^{+}(\boldsymbol{p}) \pi^{0}(-\boldsymbol{p})\right]_{I} \pi^{-}\left(\boldsymbol{p}^{\prime}\right)_{l}\right\rangle$ as in, e.g., $B \rightarrow \rho^{+} \pi^{-}$vs. $B \rightarrow \rho^{-} \pi^{+}$. "CP-enantiomers" [sG, 2003] This possibility is not accessible in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay (but in η^{\prime} decay, yes). Thus a "left-right" asymmetry in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay tests C-invariance, too.

Measurement of $\eta \rightarrow 3 \pi$ Dalitz Distribution

$Y=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1 \quad Z=X^{2}+Y^{2}$

Exp.	$3 \pi^{0}$ Events $\left(1.0^{6}\right)$	$n^{+} \pi^{-} n^{0}$ Events $\left(1.0^{6}\right)$
Total world data (include prel. WASA and prel. KLOE)	6.5	10.0
GlueX+PrimEx- + +JEF	20	19.6

- Existing data from the low energy facilities are sensitive to the detection threshold effects
- JEF at high energy has uniform detection efficiency over Dalitz phase space
- JEF will offer large statistics and improved systematics

