Supersymmetric Meson-Baryon Properties of QCD

 from Light-Front Holography and Superconformal Algebra

Stan Brodsky S은를
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

Stan Brodsky S는을
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD

 from Light-Front Holography and Superconformal Algebra

Stan Brodsky S는을
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i}
$$

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
$$

$$
\int \psi_{B S}(p, k) d k^{-} \rightarrow \psi_{L F}
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\begin{aligned}
& x= \frac{k^{+}}{P^{+}}= \\
& P^{+}, \vec{P}_{\perp} k^{0}+k^{3} \\
& P^{0}+P^{3}
\end{aligned} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i}
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory
Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
$$

$$
\int \psi_{B S}(p, k) d k^{-} \rightarrow \psi_{L F}
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory
Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \quad \int
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory
Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \quad \sum_{i}^{n} \vec{k}_{\perp i}=\overline{0}
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \quad \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Invariant under boosts! Independent of P^{μ}

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \quad \sum_{i}^{n} \vec{k}_{\perp i}=\overline{0}
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

$$
n=3
$$

Invariant under boosts! Independent of P^{μ}

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory
Eigenstate of LF Hamiltonian

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Fixed $\tau=t+z / c$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \quad \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{-} \quad \int \psi_{B S}(p, k) d k^{-} \rightarrow \psi_{L F}
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

$$
n=3
$$

Invariant under boosts! Independent of P^{μ}
Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

Off-shell in invariant mass

Remarkable new insights from $A d S / C F T$, the duality between conformal field theory and Anti-de Sitter Space

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Exact frame-independent formulation of nomperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& \text { (c) } \\
& H_{L F}^{i n t}
\end{aligned}
$$

Exact frame-independent formulation of nomperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& \text { (c) } \\
& H_{L F}^{i n t}
\end{aligned}
$$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) } \\
& \text { mon } \\
& H_{L F}^{i n t}
\end{aligned}
$$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

(a)

(b)

(c)
nome
$H_{L F}^{i n t}$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{gathered}
$$

$H_{L F}^{i n t}$: Matrix in Fock Space

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Spectrum and Light-Front wavefunctions
LFWFs: Off-shell in \mathbf{P} - and invariant mass
 $H_{L F}^{i n t}$

$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$
 $g_{q} \bar{\psi}_{q}(x) \psi_{q}(x) h(x)$

Yukawa Higgs coupling of confined quark to Higgs zero mode gives

$$
\begin{gathered}
\bar{u} u g_{q}<h>=\frac{m_{q}}{x_{q}} m_{q}=\frac{m_{q}^{2}}{x_{q}} \\
H_{L F}=\sum_{q} \frac{k_{\perp q}^{2}+m_{q}^{2}}{x_{q}}
\end{gathered}
$$

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states wíth $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $\quad \bar{s}(x) \neq s(x)$ $\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at high $\boldsymbol{x}!\quad \bar{u}(x) \neq \bar{d}(x)$

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heary quarks $\quad \bar{s}(x) \neq s(x)$

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsicheavy quarks $\quad \bar{s}(x) \neq s(x)$

Fixed LF time

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} .
$$

Intrinsic heavy quarks

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at $\operatorname{high} x$!

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

\qquad

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} .
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at $\operatorname{high} x$!

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} .
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at $\operatorname{high} x$!

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time

Front Form

Interaction
picture
p

$$
\psi\left(x_{i}, \vec{k}_{\perp i}\right)
$$

Drell \&Yan, West Exact LF formula!

Drell, sjb

$$
\psi\left(x_{i}, \vec{k}_{\perp i}\right)
$$

Drell \&Yan, West Exact LF formula!

Drell, sjb

Interaction pícture

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Interaction pícture

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Interaction pícture

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Front Form

Drell \&Yan, West Exact LF formula!

Drell, sjb

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Drell, sjb

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Drell, sjb

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Orel, sib

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Orel, sib

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& \text { Drell, sjb } \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp} \\
& \text { p, } \mathrm{S}_{\mathbf{z}}= \pm-12
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment --> Nonzer orbital quark angular momentum

Advantages of the Dirac's Front Form for Hadron Physics

 Poincare' Invariant- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs

- LFWFs are frame-independent: no boosts, no pancakes!
- Same structure function measured at an $e p$ collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

Advantages of the Dirac's Front Form for Hadron Physics

 Poincare' InvariantPhysics Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs

- LFWFs are frame-independent: no boosts, no pancakes!
- Same structure function measured at an $e p$ collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

Advantages of the Dirac's Front Form for Hadron Physics

 Poincare' InvariantPhysics Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs

Terrell, Penrose

- LFWFs are frame-independent: no boosts, no pancakes!
- Same structure function measured at an ep collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant
- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

"Hadronization at the Amplitude Level"
- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

Boost-invariant LFWF connects confined quarks and gluons to hadrons

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

Boost-invariant LFWF connects confined quarks and gluons to hadrons

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

$$
\text { Fixed } \tau=t+z / c
$$

x

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$k_{\perp}(\mathrm{GeV})$
"Hadronization at the Amplitude Level"

Need a First Approximation to QCD

Comparable in simplicity to Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

Origin of hadronic mass scale

$$
\begin{gathered}
\text { AdS/QCD } \\
\text { Light-Front Holography } \\
\text { Superconformal Algebra }
\end{gathered}
$$

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} m_{f} \bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \operatorname{l}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}}<\bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \operatorname{L}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

$H_{Q E D}$

QED atoms: positronium

 and muonium$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

Coupled Fock states

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r) \quad$ spherical Basis $\quad r, \theta, \phi$

$H_{Q E D}$

QED atoms: positronium

 and muonium$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

Coupled Fock states

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$$
\begin{gathered}
{\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)} \\
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
\end{gathered}
$$

SphericalBasis $\quad r, \theta, \phi$
Coulomb potentiat

Bohr Spectrum

Semiclassical first approximation to QED

$H_{Q E D}$

QED atoms: positronium

 and muoniumCoupled Fock states

$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)$

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

Semiclassical first approximation to QED

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

$\mathcal{L}_{Q C D}$.
 $H_{Q C D}^{L F}$
 $$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

$$
1
$$

$$
\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\mathrm{eff}}^{L F}\right] \psi_{L F}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Coupled Fock states

Effective two-particle equation

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

Light-Front QCD

Fixed $\tau=t+z / c$

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

AdS/QCD:

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Light-Front QCD

Fixed $\tau=t+z / c$

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

AdS/QCD:
Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

$U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)$

Light-Front QCD

Fixed $\tau=t+z / c$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD

Light-Front QCD

Fixed $\tau=t+z / c$

Light-Front QCD

Fixed $\tau=t+z / c$

AdS/QCD
Soft-Wall Model

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

Confinement scale:

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

AdS/QCD
Soft-Wall Model

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

Confinement scale:

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Conformal symmetry of the action

Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Conformal symmetry of the action

Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Conformat symmetry of the action
Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan:
$\kappa \simeq 0.5 \mathrm{GeV}$
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan:
$\kappa \simeq 0.5 \mathrm{GeV}$
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!
- Fubini, Rabinovici

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Meson Spectrum in Soft Wall Model

Massless pion!

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

Meson Spectrum in Soft Wall Model

Massless pion!

- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2} \quad z \rightarrow \zeta$
- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

Meson Spectrum in Soft Wall Model

Massless pion!

- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2} \quad z \rightarrow \zeta$
- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2} \quad z \longrightarrow \zeta$
- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2} \quad z \longrightarrow \zeta$
- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Dilaton profile $\varphi(z)=+\kappa^{2} z^{2} \quad z \rightarrow \zeta$
- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

$$
m_{u}=m_{d}=0
$$

de Tèramond, Dosch, sjb

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

$$
m_{u}=m_{d}=0
$$

de Tèramond, Dosch, sjb

Supersymmetric Features of QCD from LF Holography

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{q}^{2}}{1-x}|X\rangle
$$

Prediction from AdS/QCD: Meson LFWF

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Roberts et al. }
$$

Prediction from AdS/QCD: Meson LFWF

$$
\begin{gathered}
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)} \\
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Robertsetal. }
\end{gathered}
$$

Prediction from AdS/QCD: Meson LFWF

$$
\begin{gathered}
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)} \\
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Robertsetal. } \\
\text { Provides Connection of Confinement to Hadron Structure }
\end{gathered}
$$

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

$$
\psi_{M}\left(x, k_{\perp}^{2}\right)^{0}
$$

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model

massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Roberts et al. }
$$

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

AdS_{5}

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right),
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

AdS $_{5}$

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

AdS5

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

AdS_{5}

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

- Dosch, de Teramond, sjb

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
z \longmapsto \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holograpphic Dictionary

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

de Teramond, sjb

Light-Front Holograpphic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right)
$$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

de Teramond, sjb

Light-Front Holograpphic Dictionary

$\psi\left(x, \vec{b}_{\perp}\right)$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

de Teramond, sjb

Light-Front Holographbic Dictionary

 $\psi\left(x, \vec{b}_{\perp}\right) \longrightarrow \phi(z)$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

$\operatorname{LF}(3+1) \longrightarrow A d S_{5}$

Light-Front Holograpphic Dictionary

 $\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)$$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

$\operatorname{LF}(3+1) \longrightarrow A d S_{5}$

Light-Front Holograpphic Dictionary

 $\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)$$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

$\operatorname{LF}(3+1) \longrightarrow A d S_{5}$

Light-Front Holographic Dictionary

 $\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)$$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad z
$$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
(\mu R)^{2}=L^{2}-(J-2)^{2}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Light-Front Holographbic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

Uniqueness of Dilaton

$$
\varphi_{p}(z)=\kappa^{p} z^{p}
$$

- Dosch, de Tèramond, sjb

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D \\
{[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i D, }[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}} \\
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
\end{gathered}
$$

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D \\
{[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i D, }[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}} \\
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
\end{gathered}
$$

Superconformal Quantum Mechanics

Baryon Equation $Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}$

Consider $R_{w}=Q+w S ; \quad w$: dimensions of mass squared

$$
G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}
$$

New Extended Hamiltonian G is diagonal:

$$
\begin{gathered}
G_{11}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
G_{22}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
\text { Identify } f-\frac{1}{2}=L_{B}, w=\kappa^{2}
\end{gathered}
$$

LF Holography

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathbf{S}=1 / 2, \mathbf{P}=+
\end{gathered}
$$

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right)
\end{gathered}
$$

LF Holography

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathbf{S}=1 / 2, \mathbf{P}=+
\end{gathered}
$$

Meson Equation

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same! }
$$

LF Holography

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathbf{S}=1 / 2, \mathbf{P}=+
\end{gathered}
$$

Meson Equation

both chiralities

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same! }
$$

$S=0$, I= I Meson is superpartner of $S=I / 2$, I=| Baryon

LF Holography

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathbf{s}=\mathrm{I} / 2, \mathrm{P}=+
\end{gathered}
$$

Meson Equation

both chiralities

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same! }
$$

$S=0$, $I=\|$ Meson is superpartner of $S=I / 2$, I=| Baryon Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

Quark Chiral Symmetry of Eigenstate!

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

Quark Chiral Symmetry of Eigenstate!

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Nucleon: Equal Probability for $\mathrm{L}=0, \mathrm{I}$

Dosch, de Teramond, Lorce, sjb

Fit to the slope of Regge trajectories, including radial excitations

Dosch, de Teramond, Lorce, sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations

Dosch, de Teramond, Lorce, sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Superconformal Quantum Mechanics

de Tèramond, Dosch, sjb

Same slope

Superconformal Quantum Mechanics

de Tèramond, Dosch, sjb

Same slope
$\frac{M^{2}}{4 \kappa^{2}}$
$\left.M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)\right) N{ }_{\frac{7}{2}}^{7^{-}}$

Solid line: $x=0.53 \mathrm{GeV}$

Superconformal meson-nucleon partners

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$$
\phi_{M}, L_{B}+1
$$

$$
\psi_{B+}, L_{B}
$$

Baryon

Tetraquark

Proton: quark + scalar diquark $\mid q(q q)>$
(Equal weight: $L=0, L=1$)

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with $L, L+1$ with same mass eigenvalue
- $J^{z}=L^{z}+1 / 2=\left(L^{z}+1\right)-1 / 2$

$$
S^{z}= \pm 1 / 2
$$

- Proton spin carried by quark L^{z}
$\left\langle J^{z}\right\rangle=\frac{1}{2}\left(S_{q}^{z}=\frac{1}{2}, L^{z}=0\right)+\frac{1}{2}\left(S_{q}^{z}=-\frac{1}{2}, L^{z}=1\right)=\left\langle L^{z}\right\rangle=\frac{1}{2}$
- Mass-degenerate meson "superpartner" with $L_{M}=L_{B}+1$. "Shifted meson-baryon Duality"

Mesons and baryons have same κ !

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

Solid line: $x=0.53 \mathrm{GeV}$

Superconformal meson-nucleon partners

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with J = L+S.

- quark-antiquark meson $\left(\mathrm{L}_{\mathrm{M}}=\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)$)
- quark-diquark baryon (L_{B})
- quark-diquark baryon $\left(\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)$
- diquark-antidiquark tetraquark $\left(\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{\mathrm{B}}\right)$

- Universal Regge slopes $\lambda=\kappa^{2}$

$$
\begin{aligned}
& M_{H}^{2} / \lambda=\overbrace{\underbrace{\text { light-front harmonic oscillator }}_{\text {kinetic }} \begin{array}{c}
\text { contribution from 2-dim }
\end{array}}^{\begin{array}{c}
\text { contribution from AdS and } \\
\text { superconformal algebra }
\end{array}}+\overbrace{\text { potential }}^{\left(2 n+L_{H}+1\right)}
\end{aligned}+\overbrace{2(\text { baryons, tetraquarks })=+1}^{\chi\left(L_{H}+s\right)+2 \chi}+<
$$

New World of Tetraquarks

$$
3_{C} \times 3_{C}=\overline{3}_{C}+6_{C}
$$

Bound!

- Diquark: Color-Confined Constituents: Color $\overline{3}_{C}$
- Diquark-Antidiquark bound states $\overline{3}_{C} \times 3_{C}=1_{C}$

$$
\sigma(T N) \simeq 2 \sigma(p N)-\sigma(\pi N)
$$

$2[\sigma([\{q q\} N)+\sigma(q N)]-[\sigma(q N)+\sigma(\bar{q} N)]=[\sigma(\{q q\} N)+\sigma(\{q q\} N)]$
Candidates $f_{0}(980) I=0, J^{P}=0^{+}$, partner of proton

$$
a_{1}(1260) I=0, J^{P}=1^{+}, \text {partner of } \Delta(1233)
$$

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Foundations of Light-Front Holography

- The QCD Lagrangian for $\mathrm{m}_{\mathrm{q}} \mathbf{= 0}$ has no mass scale.
- What determines the hadron mass scale?
- DAFF principle: add terms linear in D and K to Conformal Hamiltonian: Mass scale к appears, but action remains scale invariant \rightarrow unique harmonic oscillator potential
- Apply DAFF to the Poincare' invariant LF Hamiltonian: Unique color-confining potential
- Fixes AdS_{5} dilaton: predicts Spin and Spin-Orbit Interactions
- Apply DAFF to Superconformal representation of the Lorentz group
- Predicts Meson, Baryon, Tetraquark spectroscopy, dynamics

Supersymmetric Features of Spectrum

```
APS-GHP Workshop
    February 3, 2017
```

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o. No mass-degenerate parity partners!

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}} . \text { from dilaton } e^{\kappa^{2} z^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Running Coupling from Modífied AdS/QCD
Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}} \text { from dilaton } e^{\kappa^{2} z^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

$m_{\rho}=\sqrt{2} \kappa$
Deur, de Tèramond, sjb

All-Scale QCD Coupling

Process-independent strong running coupling

Features of LF Holographic QCD

- Regge spectroscopy-same slope in n,Lfor mesons, baryons
- Chiral features for $m_{q}=\boldsymbol{0}$: $\boldsymbol{m}_{\boldsymbol{\pi}}=\boldsymbol{o}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between badron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHOCD) Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Similarly for m_{ρ}.

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{M S}
$$

$$
m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
\left[m_{p} \simeq 3.21 \Lambda \frac{}{M S}\right.
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}
$$

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\left.\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}\right]
$$

$$
\frac{\Lambda_{\overline{M S}}}{m_{\rho}}=0.455 \pm 0.031
$$

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\begin{aligned}
\left(m_{q}\right. & =0) \\
m_{\pi} & =0
\end{aligned}
$$

$$
\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}
$$

$$
\frac{\Lambda_{\overline{M S}}}{m_{\rho}}=0.455 \pm 0.031
$$

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\begin{aligned}
\left(m_{q}\right. & =0) \\
m_{\pi} & =0
\end{aligned}
$$

$$
\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}
$$

$$
\frac{\Lambda_{\overline{M S}}}{m_{\rho}}=0.455 \pm 0.031
$$

- Partition of the Proton's Mass: Potential vs. Kinetic Contributions
- Color Confinement
- Role of Quark Orbital Angular Momentum in the Proton
- Quark-Diquark Structure
- Quark Mass Contribution
- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions

- Color Confinement

$$
\begin{aligned}
\Delta \mathcal{M}_{L F K E}^{2} & =\kappa^{2}(1+2 n+L) \\
\Delta \mathcal{M}_{L F P E}^{2} & =\kappa^{2}(1+2 n+L)
\end{aligned}
$$

- Role of Quark Orbital Angular Momentum in the Proton
- Quark-Diquark Structure
- Quark Mass Contribution
- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\begin{aligned}
\Delta \mathcal{M}_{L F K E}^{2} & =\kappa^{2}(1+2 n+L) \\
\Delta \mathcal{M}_{L F P E}^{2} & =\kappa^{2}(1+2 n+L)
\end{aligned}
$$

- Role of Quark Orbital Angular Momentum in the Proton
- Quark-Diquark Structure
- Quark Mass Contribution
- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\begin{aligned}
\Delta \mathcal{M}_{L F K E}^{2} & =\kappa^{2}(1+2 n+L) \\
\Delta \mathcal{M}_{L F P E}^{2} & =\kappa^{2}(1+2 n+L)
\end{aligned}
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

- Quark-Diquark Structure
- Quark Mass Contribution
- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\begin{aligned}
\Delta \mathcal{M}_{L F K E}^{2} & =\kappa^{2}(1+2 n+L) \\
\Delta \mathcal{M}_{L F P E}^{2} & =\kappa^{2}(1+2 n+L)
\end{aligned}
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure

- Quark Mass Contribution
- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>\quad \begin{aligned} & \text { from the Yukawa coupling } \\ & \text { to the Higgs zero mode }\end{aligned}$

- Baryonic Regge Trajectory
- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>\quad \begin{gathered}\text { from the Yukawa coupling } \\ \text { to the Higgs zero mode }\end{gathered}$
Baryonic Regge Trajectory $\quad M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)$

- Mesonic Supersymmetric Partners
- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0, I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>\quad \begin{gathered}\text { from the Yukawa coupling } \\ \text { to the Higgs zero mode }\end{gathered}$
Baryonic Regge Trajectory $\quad M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)$
Mesonic Supersymmetric Partners $\quad L_{M}=L_{B}+1$

- Proton Light-Front Wavefunctions and Dynamical Observables
- Form Factors, Distribution Amplitudes, Structure Functions
- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>$
from the Yukawa coupling to the Higgs zero mode

Baryonic Regge Trajectory

$$
M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)
$$

Mesonic Supersymmetric Partners

$$
L_{M}=L_{B}+1
$$

Proton Light-Front Wavefunctions and Dynamical Observables

- Form Factors, Distribution Amplitudes, Structure Functions

$$
\begin{aligned}
& \operatorname{lorservables~}_{\psi_{M}\left(x, k_{\perp}\right)}=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
& \text { unctions }
\end{aligned}
$$

- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>$ from the Yukawa coupling to the Higgs zero mode
Baryonic Regge Trajectory $\quad M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)$
Mesonic Supersymmetric Partners $\quad L_{M}=L_{B}+1$
Proton Light-Front Wavefunctions and Dynamical Observables

$$
\begin{aligned}
& \text { Dbservables } \\
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
& \text { unctions }
\end{aligned}
$$

Form Factors, Distribution Amplitudes, Structure Functions

- Non-Perturbative - Perturbative QCD Transition
- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>$ from the Yukawa coupling to the Higgs zero mode
Baryonic Regge Trajectory $\quad M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)$
Mesonic Supersymmetric Partners $\quad L_{M}=L_{B}+1$
Proton Light-Front Wavefunctions and Dynamical Observables
$\left.\begin{array}{l}\psi_{M}\left(x, k_{\perp}\right)\end{array}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}$
Form Factors, Distribution Amplitudes, Structure Functions
Non-Perturbative - Perturbative QCD Transition $Q_{0}=0.87 \pm 0.08 \mathrm{GeV} \overline{M S}$ scheme

- Dimensional Transmutation: $\quad M_{p} / \Lambda_{\overline{M S}}$

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Stan Brodsky

Partition of the Proton's Mass: Potential vs. Kinetic Contributions
Color Confinement $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2} \quad \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ $\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)$
Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>$
from the Yukawa coupling to the Higgs zero mode
Baryonic Regge Trajectory

$$
M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)
$$

Mesonic Supersymmetric Partners

$$
L_{M}=L_{B}+1
$$

Proton Light-Front Wavefunctions and Dynamical Observables

$$
\begin{aligned}
& \text { Observables } \\
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
& \text { unctions }
\end{aligned}
$$

Form Factors, Distribution Amplitudes, Structure Functions
Non-Perturbative - Perturbative OCD Transition $Q_{0}=0.87 \pm 0.08 \mathrm{GeV} \overline{M S}$ scheme
Dimensional Transmutation:

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}
$$

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1}{ }_{N \rightarrow N^{*}}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Consistent with counting rule, twist 3

Predict hadron spectroscopy and dynamics
Excited Baryons in Holographic QCD G. de Teramond \& sjb

Sufian, de Teramond, Deur, Dosch, sjb

Flavor Dependence of $Q^{6} F_{2}\left(Q^{2}\right)$

Sufian, de Teramond, Deur, Dosch, sjb

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Dressed soft-wall current brings in higher Fock states and more vector meson poles

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

Dressed
Current
in Soft-Wall
Model

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.
de Tèramond \& sjb

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Pion Form Factor from AdS/QCD and Light-Front Holography

Future Directions

- Hadronization at the Amplitude Level: LFWFs
- Running Coupling at all \mathbf{Q}^{2}
- Factorization Scale for ERBL, DGLAP evolution: $\mathbf{Q}_{\mathbf{o}}$
- Calculate Sivers Effect including FSI and ISI
- Eliminate renormalizations scale ambiguity: PMC
- Compute Tetraquark Spectroscopy: Sequential Clusters
- Update SU(6) spin-flavor symmetry
- Heavy Quark States: Supersymmetry, not conformal
- Compute higher Fock states; e.g. Intrinsic Heavy Quarks
- Nuclear States - Hidden Color
- Basis LF Quantization

Novel QCD

- Flavor-Dependent Anti-Shadowing
- LF Vacuum and Cosmological Constant: No QCD condensates
- Principle of Maximum Conformality (PMC): Eliminate renormalization anomaly; scheme independent
- Match Perturbative and Non-Perturbative Domains
- Hadronization at Amplitude Level
- Intrinsic Heavy Quarks from AdS/QCD: Higgs at high XF
- Ridge from flux tube collisions
- Baryon-to-meson anomaly at high PT

Supersymmetric Features of QCD
from LF Holography

Supersymmetric Meson-Baryon Properties of QCD

 from Light-Front Holography and Superconformal Algebra

Stan Brodsky S은를
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

Stan Brodsky S는을
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD

 from Light-Front Holography and Superconformal Algebra

Stan Brodsky S는을
with Guy de Tèramond, Hans Günter Dosch,
C. Lorce, K. Chiu, R. S. Suffan, A. Deur

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017

Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra

7th Workshop of the APS Topical Group on Hadronic Physics
Washington D.C., February 3, 2017
$Q^{2}=5 \mathrm{GeV}^{2}$

"One of the gravest puzzles of theoreticalphysics"
 DARK ENERGY AND THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\begin{aligned}
& \left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \\
& \left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56}
\end{aligned} \quad \Omega_{\Lambda}=0.76(\text { expt })
$$

Extraordinary conflict between the conventional definition of the vacuum in quantum field theory and cosmology

"One of the gravest puzzles of theoreticalphysics"
 DARK ENERGY AND THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\begin{aligned}
& \left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \\
& \left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56}
\end{aligned} \quad \Omega_{\Lambda}=0.76(\text { expt })
$$

Extraordinary conflict between the conventional definition of the vacuum in quantum field theory and cosmology

Elements of the solution:
(A) Light-Front Quantization: causal, frame-independent vacuum
(B) New understanding of QCD "Condensates"
(C) Higgs Light-Front Zero Mode

Light-Front vacuum can simulate empty universe Shrock, Tandy, Roberts, sjb

- Independent of observer frame
- Causal
- Lowest invariant mass state $M=0$.
- Trivial up to $\mathbf{k}^{+}=\mathbf{o}$ zero modes-- already normal-ordering
- Higgs theory consistent with trivial LF vacuum (Srivastava, sjb)
- QCD and AdS/QCD: "In-hadron"condensates (Maris, Tandy Roberts) -- GMOR satisfied.
- QED vacuum; no loops
- Zero cosmological constant from QED, QCD, EW

Supersymmetric Features of OCD from LF Holography

Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD

Matin Mojaza*
CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Stanley J. Brodsky ${ }^{\dagger}$
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Xing-Gang Wu ${ }^{\ddagger}$
Department of Physics, Chongqing University, Chongqing 401331, People's Republic of China (Received 13 January 2013; published 10 May 2013)
We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal $\left\{\beta_{i}\right\}$ terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.

APS-GHP Workshop February 3, 2017

Supersymmetric Features of QCD from LF Holography

Stan Brodsky S느를

Elimination of QCD Scale Ambiguities

The Principle of Maximum Conformality (PMC)

Applications of PMC renormatization-scale-setting for top, Higgs production, and other processes at the LHC

S-Q Wang, X-G Wu, sjb

$\sigma(p p \rightarrow H X \rightarrow \gamma \gamma X)$

Comparison of the PMC predictions for the fiducial cross section $\sigma_{\text {fid }}(p p \rightarrow$ $H \rightarrow \gamma \gamma$) with the ATLAS measurements at various collision energies. The LHC-XS predictions are presented as a comparison.

$\sigma_{\text {fid }}(p p \rightarrow H \rightarrow \gamma \gamma)$	7 TeV	8 TeV	13 TeV
ATLAS data [48]	49 ± 18	$42.5_{-10.2}^{+10.3}$	52_{-37}^{+40}
LHC-XS [3]	24.7 ± 2.6	31.0 ± 3.2	$66.1_{-6.6}^{+6.8}$
PMC prediction	$30.1_{-2.2}^{+2.3}$	$38.4_{-2.8}^{+2.9}$	$85.8_{-5.3}^{+5.7}$

Proton 5 -quark Fock State: Intrinsic Heavy Quarks

Minimal offshellness

$$
\begin{aligned}
x_{Q} & \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2} \\
\text { Probability }(\mathrm{QED}) & \propto \frac{1}{M_{\ell}^{4}} \quad \text { Probability }(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}
\end{aligned}
$$

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al. Hoyer, Vogt, et al

Fixed LF time

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al. Hoyer, Vogt, et al

Fixed LF time

Measurement of Charm Structure Function!
J. J. Aubert et al. [European Muon Collaboration], "Production Of Charmed Particles In $250-\mathrm{Gev} \mathrm{Mu}+$ - Iron Interactions," Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm
Hoyer, Peterson, Sakai, sjb

Measurement of Charm Structure Function!
J. J. Aubert et al. [European Muon Collaboration], "Production Of Charmed Particles In $250-\mathrm{Gev} \mathrm{Mu}+$ - Iron Interactions," Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm
Hoyer, Peterson, Sakai, sjb

DGLAP / Photon-Gluon Fusion: factor of 30 too small

DGLAP / Photon-Gluon Fusion: factor of 30 too small

DGLAP $/$ Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Measurement of $\gamma+\boldsymbol{b}+X$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Data/Theory

Consistent with EMC measurement of charm structure function at high x

Measurement of $\gamma+\boldsymbol{b}+X$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Data/Theory

Consistent with EMC measurement of charm structure function at high x

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Data/Theory

Consistent with EMC measurement of charm structure function at high x

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Data/Theory

Signal for significant IC
 at $\mathrm{X}>0 . \mathrm{I}$

Consistent with EMC measurement of charm structure function at high x

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

Data/Theory

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio insensitive to gluon PDF, scales

Signal for significant IC
 at $\mathrm{X}>0 . \mathrm{I}$

Consistent with EMC measurement of charm structure function at high x

Intrinsic Charm Mechanism for Inclusive High - X_{F} Higgs Production

Also: intrinsic strangeness, bottom, top
Higgs can have $>80 \%$ of Proton Momentum!
New production mechanism for Higgs

