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Important Example: Top-Quark FB Asymmetry

Table 5: Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron
with pp̄-collision energy

p
s = 1.96 TeV. For conventional scale setting, we set the scale

µr ⌘ Q. For PMC scale setting, we set the initial scale µinit
r = Q and then apply the

PMC procedure. Here we take Q = mt = 172.9 GeV and use the MSRT 2004-QED parton
distributions [178] as the PDF.

Conventional scale setting PMC scale setting
LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.890 0.963 0.483 6.336 4.748 1.727 -0.058 6.417
(gg)-channel 0.526 0.440 0.166 1.132 0.524 0.525 0.160 1.208
(gq)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332
(gq̄)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

sum 5.416 0.985 0.659 7.402 5.272 2.176 0.112 7.559

Figure 16: Dominant cut diagrams for the nf -terms at the ↵4-order of the (qq̄)-channel,
which are responsible for the smaller e↵ective NLO PMC scale µPMC,NLO

r , where the solid
circles stand for the light-quark loops.

• Att̄,HP
FB |O(↵3

s) and App̄,HP
FB |O(↵3

s) stand for the pure QCD asymmetry at the ↵3
s-order under the tt̄-rest

frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2

s↵) and App̄,HP
FB |O(↵2

s↵) stand for the combined QED and weak with the QCD asymmetry
at the ↵2

s↵-order under the tt̄-rest frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2) and App̄,HP

FB |O(↵2) stand for the pure electroweak asymmetry at the ↵2-order under the
tt̄-rest frame and the pp̄ lab frame, respectively.

Total cross-sections for the top-quark pair production at the Tevatron with pp̄-collision energy
p
s =

1.96 TeV and with the same parameters of Ref. [175] are given in Table 5. In the formulas (228,229),

we have defined an e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

for the asymmetric part, which is the weighted

average of the QCD coupling for the (qq̄)-channel; i.e. in using the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

,

one obtains the same (qq̄)-channel NLO cross-section as that of ↵s(µPMC,NLO
r )8.

It is noted that the NLO-level asymmetric part for (qq̄)-channel only involves the NLO PMC scale for

the non-Coulomb part, so the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

can be unambiguously determined. We

obtain a smaller e↵ective NLO PMC scale µPMC,e↵ective
r ' exp(�9/10)mt ⇠ 70 GeV, which corresponds

to ↵s

⇣

µPMC,NLO
r

⌘

= 0.1228. It is larger than ↵HP
s (mt) ' 0.098 [174, 175]. This e↵ective NLO PMC

scale is dominated by the non-Coulomb nf -terms at the ↵4
s-order, which are shown in Fig.(16). In these

diagrams, the momentum flow in the virtual gluons possess a large range of virtualities. This e↵ect for

8In principle, one could divide the cross-sections into symmetric and asymmetric components and find PMC scales
for each of them. For this purpose, one needs to identify the nf -terms or the n2

f -terms for both the symmetric and
asymmetric parts at the NNLO level separately.
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Figure 17: Comparison of the PMC prediction with the CDF data [166] for the tt̄-pair
forward-backward asymmetry for the whole phase-space. The Hollik and Pagani’s results
(HP) [175] using conventional scale setting are presented for a comparison. The result for
D0 data [167] shows a similar behavior.

NLO PMC scale µPMC,e↵ective
r can be regarded as a weighted average of these di↵erent momentum flows

in the gluons, which can be softer than the nominal scale, mt. Finally, we obtain

Att̄,PMC
FB ' 12.7% ; App̄,PMC

FB ' 8.39% . (230)

Thus after PMC scale setting, the top-quark asymmetry under the conventional scale setting is in-
creased by ⇠ 42% for both the tt̄-rest frame and the pp̄-laboratory frame. This large improvement is
explicitly shown in Fig.(17), where Hollik and Pagani’s results which are derived under conventional
scale setting [175] are presented for comparison.

Another possible e↵ect from QCD can be the lensing e↵ect of the final state interactions of the t and
t̄ with the beam spectators. The same diagrams causes Sivers single-spin asymmetry and di↵ractive
deep inelastic scattering9.

The CDF collaboration has found that when the tt̄-invariant mass, Mtt̄ > 450 GeV, the top-
quark forward-backward asymmetry Att̄

FB(Mtt̄ > 450 GeV) is about 3.4 standard deviations above
the SM asymmetry prediction under the conventional scale setting [173]. After applying PMC scale

setting, we have �tot,PMC
H1H2!tt̄X(Mtt̄ > 450 GeV) = 2.406 pb and ↵s

⇣

µPMC,NLO
r

⌘

= 0.1460 with µPMC,NLO
r ⇠

exp(�19/10)mt ' 26 GeV. Then, we obtain

Att̄,PMC
FB (Mtt̄ > 450 GeV) ' 35.0% , (231)

which is increased by about 1.7 times of the previous one Att̄,HP
FB (Mtt̄ > 450 GeV) = 12.8% [175]. Our

present prediction is only about 1�-deviation from the CDF data, which is shown in Fig.(18). This
shows that, after PMC scale setting, the discrepancies between the SM estimate and the present CDF
and D0 data are greatly reduced.

6 Summary

Because of the RG invariance (39,40), the predictions for a physical observable must be independent
of the renormalization scheme and the initial scale. The results cannot depend on which scheme the

9We thanks Benjamin von Harling and Yue Zhao for conversions on this possibility.
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Figure 18: The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV) and the corresponding CDF

data [166] for the tt̄-pair forward-backward asymmetry forMtt̄ > 450 GeV. The Hollik and
Pagani’s results (HP) [175] using conventional scale setting are presented for a comparison.

theorist chooses; e.g. MS-scheme, MOM-scheme, etc. Note that the conventional MS-scheme is
somewhat artificial. One can introduce a more general MS-like renormalization scheme, R�-scheme,
by further absorbing an arbitrary constant � into 1/✏ pole, i.e. 1

✏ + ln(4⇡) � �E � �. Physical results
cannot depend on the choice of �.

At a fixed-order the dependence on the renormalization scheme and initial scale choice leads to large
uncertainties for perturbative QCD predictions. The problem is compounded in multi-scale processes.
The conventional scale setting procedure assigns an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. As we have discussed in this review, this ad hoc assignment of the
range and associated systematic error is unnecessary and can be eliminated by a proper scale setting
as the PMC.

The extended RG equations, which includes the dependence on the scheme parameters, provide a
convenient way for estimating both the scheme and scale dependence of the perturbative predictions
for a physical process. It provides a way for the running coupling to run reliably either in scale or in
scheme. With the help of the extended RG equations, we have presented a general demonstration for
the RG invariance. Furthermore, this formalism provides a platform for a reliable error analysis, and it
also provides a precise definition for the QCD asymptotic scale under any renormalization R-scheme,
⇤

0tH�R
QCD , which is defined as the pole of the strong coupling in the ’t Hooft scheme associated with

R-scheme.

Several scale setting methods have been proposed in the literature: FAC, PMS, BLM and PMC.
The FAC (Fastest Apparent Convergence) use the scale to contract the prediction to one term. The
PMS (Principle of Minimum Sensitivity) chooses the scale at the point of minimum variation. The
BLM (Brodsky-Lepage-Mackenzie) and PMC (Principle of Maximum Conformality) procedures shift
all {�i}-terms into the argument of the running coupling. Based on the extended RG equation, we
have discussed the self-consistency conditions for a scale setting method, which include the existence
and uniqueness of the renormalization scale, reflexivity, symmetry, and transitivity. These properties
are natural requirements of RG invariance. We have shown that the FAC and BLM/PMC satisfy
these requirements, whereas the PMS does not. The PMS is designed to be renormalization-scheme
independent; however it violates the symmetry and transitivity properties of the renormalization group,
and does not reproduce the Gell Mann-Low scale for QED observables. In addition, the application
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Conventional Scale Setting: ↵(µ) = ↵MS(µ) and µ = [

1
2Q, 2Q]

Brodsky, Wu, Phys.Rev.Lett. 109, [arXiv:1203.5312]

3

PMC scale setting Conventional scale setting

Q = mt/4 Q = mt Q = 10mt Q = 20mt Q =
√
s µR ≡ mt/2 µR ≡ mt µR ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.625(5) 7.624(6) 7.628(5) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.3(5) 942.0(8) 941.4(8) 942.2(8) 923.8(7) 907.4(4) 870.9(6)

TABLE I. Dependence of the tt̄ production cross-sections (in unit: pb) at the Tevatron and LHC on the initial renormalization
scale µinit

R = Q. Here mt = 172.9 GeV. The number in parenthesis shows the Monte Carlo uncertainty in the last digit.
σ

σ

FIG. 1. Total cross-section σtt̄ for the top quark pair produc-
tion versus top quark mass.

equal to each other within part per mill accuracy 1. For
comparison, we also present the results with conventional
scale setting in Table I. For µR ∈ [mt/2, 2mt], we ob-

tain the usual renormalization scale-uncertainty
(

+3%
−4%

)

.

This shows that the renormalization scale uncertainty is
greatly suppressed and essentially eliminated using PMC
even at the NNLO level. This is consistent with renor-
malization group invariance: there should be no depen-
dence of the prediction for a physical observable on the
choice of the initial renormalization scale.

The PMC predictions for total cross-section σtt̄ are
sensitive to the top quark mass. We present σtt̄ as a
function of mt in Fig.(1). After PMC scale setting, the
value of σtt̄ becomes very close to the central values of the
experimental data [9–12]. By varying mt = 172.9 ± 1.1
GeV [19], we predict

σTevatron,1.96TeV = 7.626+0.265
−0.257 pb (6)

σLHC,7TeV = 171.8+5.8
−5.6 pb (7)

σLHC,14TeV = 941.3+28.4
−26.5 pb (8)
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FIG. 2. Comparison of the PMC prediction with the CDF data [21] for the tt̄-pair forward-backward asymmetry for the whole
phase-space. The left diagram is for Att̄

FB in the tt̄-rest frame, the middle diagram is for App̄
FB in the laboratory frame, and

the right diagram is for Att̄
FB(Mtt̄ > 450 GeV). The Hollik and Pagani’s results (HP) [24] using conventional scale setting are

presented for a comparison. The result for D0 data [22] shows a similar behavior.

1 There is some small residual initial-scale dependence in the PMC scales because of unknown-higher-order {βi}-terms.
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Application of the Principle of Maximum Conformality to the Top Quark
Forward-Backward Asymmetry at the Tevatron

Stanley J. Brodsky1∗ and Xing-Gang Wu1,2†
1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

2 Department of Physics, Chongqing University, Chongqing 401331, P.R. China
(Dated: June 19, 2012)

The renormalization scale uncertainty can be eliminated by the Principle of Maximum Con-
formality (PMC) in a systematic scheme-independent way. Applying the PMC for the tt̄-pair
hadroproduction at the NNLO level, we have found that the total cross-sections σtt̄ at both the
Tevatron and LHC remain almost unchanged when taking very disparate initial scales µinit

R equal
to mt, 10mt, 20mt and

√
s, which is consistent with renormalization group invariance. As an

important new application, we apply PMC scale setting to study the top quark forward-backward
asymmetry. We observe that the more convergent perturbative series after PMC scale setting leads
to a more accurate top quark forward-backward asymmetry. The resulting PMC prediction on the
asymmetry is also free from the initial renormalization scale-dependence. Because the NLO PMC
scale has a dip behavior for the (qq̄)-channel at small subprocess collision energies, the importance
of this channel to the asymmetry is increased. We observe that the asymmetries Att̄

FB and App̄
FB at

the Tevatron will be increased by 42% in comparison to the previous estimates obtained by using
conventional scale setting; i.e. we obtain Att̄,PMC

FB " 12.5% and App̄,PMC

FB " 8.28%. Moreover, we

obtain Att̄,PMC

FB (Mtt̄ > 450 GeV) " 35.0%. These predictions have a 1σ-deviation from the present
CDF and D0 measurements; the large discrepancies of the top quark forward-backward asymmetry
between the Standard Model estimate and the CDF and D0 data are thus greatly reduced.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh

Keywords: PMC, Renormalization Scale, top quark Forward-Backward Asymmetry

I. INTRODUCTION

The top quark is the heaviest known elementary par-
ticle, and it plays a fundamental role in testing the Stan-
dard Model (SM) and the extensions of the SM. Its
production and decay channels are important probes of
new physics, and because of its large coupling to the
Higgs, the top quark production processes provide a sen-
sitive probe of electroweak symmetry breaking. The to-
tal cross-section for the top quark pair production has
been calculated up to NNLO within the MS-scheme in
Refs. [1–20]. The SM estimates, especially those obtained
by using the Principle of Maximum Conformality (PMC)
[17, 18], agree well with the experimental result which has
been measured with a precision ∆σtt̄/σtt̄ ∼ ±7% at the
Tevatron [21, 22] and ∼ ±10% at the LHC [23, 24].

The top quark forward-backward asymmetry which
originates from charge asymmetry physics [25, 26] has
also been studied at the Tevatron and LHC. Two op-
tions for the asymmetry have been used for experimental
analysis; i.e. the tt̄-rest frame asymmetry

Att̄
FB =

σ(ytt̄t > 0)− σ(ytt̄t < 0)

σ(ytt̄t > 0) + σ(ytt̄t < 0)
(1)

∗ email:sjbth@slac.stanford.edu
† email:wuxg@cqu.edu.cn

and the pp̄-laboratory frame asymmetry

App̄
FB =

σ(ypp̄t > 0)− σ(ypp̄t < 0)

σ(ypp̄t > 0) + σ(ypp̄t < 0)
, (2)

where ytt̄t is the top quark rapidity in the tt̄-rest frame
and ypp̄t is the top quark rapidity in the pp̄-laboratory
frame (or the pp̄ center-of-mass frame). The CDF and
D0 collaborations have found comparable values in the
tt̄-rest frame: Att̄,CDF

FB = (15.8± 7.5)% [27] and Att̄,D0
FB =

(19.6 ± 6.5)% [28], where the uncertainties are derived
from a combination of statistical and systematic errors.
The asymmetry in the pp̄-laboratory frame measured by
CDF is App̄,CDF

FB = (15.0 ± 5.5)% [27]. The CDF col-
laboration has also measured the dependence of Att̄

FB
with respect to the tt̄-invariant mass Mtt̄: the asymme-
try increases with Mtt̄, and Att̄

FB(Mtt̄ > 450 GeV) =
(47.5± 11.4)% [27].
These measured top quark forward-backward asymme-

tries are much larger than the usual SM estimates. For
example, the NLO QCD contributions to the asymmet-
ric tt̄-production using conventional scale setting yield
Att̄

FB # 7% and App̄
FB # 5% (see e.g. [29]), which are

about 2σ-deviation from the above measurements. For
the case of Mtt̄ > 450 GeV, using the MCFM pro-
gram [30], one obtains Att̄

FB(Mtt̄ > 450 GeV) ∼ 8.8%
which is about 3.4σ-deviation from the data. These dis-
crepancies have aroused great interest because of the
possibility for probing new physics beyond the Standard
Model.

HP: Hollik, Pagani, Phys.Rev. D84(2011)

Improving pQCD precision important for exposing new physics correctly!

Conventional ‘uncertainty estimate’ can be misleading 
(see also Blumlein & van Neerven, Phys.Lett. B450, 417[1999]) 

µr 6= µf (!)
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(a) (b) (c)

FIG. 3. Representative cut diagrams contributing to the
QCD-QED interference term O(α2

sα). The wave lines stand
for the photon.

asymmetry at the so-called NNLO level:

AFB =
αs

D0

[

N1 − αs

(

D1N1

D0

)

+ α2
s

(

D2
1N1

D2
0

)]

.

Furthermore, it is natural to assume that those
higher-order terms Ni andDi with i > 2 after PMC
scale setting will also give negligible contribution 4;
the above asymmetry can thus be resummed to a
more convenient form:

AFB =
α3
sN1

α2
sD0 + α3

sD1
. (4)

• As argued by Refs. [26, 31, 32], the electromag-
netic and weak interaction will provide an extra
∼ 20% increment for the asymmetry. This shows
that the electromagnetic contribution provides a
non-negligible fraction of the QCD-based antisym-
metric cross-section with the same overall sign. The
asymmetry to be calculated thus changes to

AFB =
α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
. (5)

Representative diagrams contributing to the QCD-
QED interference term Ñ1 at the order O(α2

sα) are
shown in Fig.(3). The weak contributions to the
asymmetry are obtained by changing the photon
propagator to be a Z0-propagator. The pure elec-
troweak antisymmetric O(α2) term Ñ0 arises from
|Mqq̄→γ→tt̄ +Mqq̄→Z0→tt̄|2 [32].

Based on the above considerations, the top quark
forward-backward asymmetry after PMC scale setting
can be written as

Att̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ytt̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ytt̄t < 0

)]

(6)

4 There may still be large higher-order corrections not associated
with renormalization. The nf -dependent but renormalization
scale independent terms should not be absorbed into the coupling
constant. An important example in QED case is the electron-
loop light-by-light contribution to the sixth-order muon anoma-
lous moment which is of order (α/π)3 ln(mµ/me) [57].

FIG. 4. PMC scales for the dominant asymmetry (qq̄)-channel
versus the sub-process collision energy

√
s for the top quark

pair production up to 1.96 TeV, where we have set the initial
renormalization scale µinit

r = mt = 172.9 GeV.

and

App̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ypp̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ypp̄t < 0

)

]

,(7)

where σtot
H1H2→tt̄X is total hadronic cross-section up to

NLO. The symbol σ(qq̄)
asy stands for the asymmetric cross-

section of the (qq̄)-channel which includes the above men-
tioned O(α3

s), O(α2
sα) and O(α2) terms. Here µPMC

R
stands for the PMC scale. In the denominator for the
total cross-section up to NLO, for each production chan-
nel, we need to introduce two LO PMC scales which are
for the Coulomb part and non-Coulomb part accordingly,
and one NLO PMC scale for the non-Coulomb part 5.
In the numerator, we only need the NLO PMC scale
µPMC,NLO
R for the (qq̄)-channel, since it is the only asym-

metric component. Detailed processes for deriving these
PMC scales can be found in Ref.[18], which are obtained
by using the cross-sections calculated within the MS-
scheme. We present the behaviors of the PMC scales
for the dominant asymmetric (qq̄)-channel in Fig.(4).
Note that if the cross-sections are calculated within
any other renormalization scheme, some proper scale-
displacements to the present PMC scales will be auto-
matically set by PMC scale setting so as to ensure the
scheme-independence of the final estimation.
It is interesting to observe that there is a dip for the

NLO scale µPMC,NLO
R of the (qq̄)-channel when

√
s $

[
√
2 exp(5/6)]mt ∼ 563 GeV, which is caused by the cor-

5 Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are distinct and
non-interfering, their PMC scales should be set separately [18].


