
function. Here we do not intend to give a full demonstration
of this in the Drell-Yan process; a generalized factorization
theorem which includes transverse momentum dependent
functions and initial- or final-state interactions remains to be
proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this
effective # in Fig. 2. Also, for simplicity we will perform
the explicit calculation in QED. Our analysis can be gener-
alized to the corresponding calculation in QCD. The final-
state interaction from gluon exchange has the strength
!e1e2!/4$→CF%s(&2), where ei are the photon couplings to
the quark and diquark.
The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"

used for the evaluation of a twist-4 contribution ()1/Q2) to
the unpolarized Drell-Yan cross section. The differences
compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-
sumption that the matrix elements are nonvanishing in case
the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-
mentum Q! of the lepton pair with respect to the initial
hadrons. If this transverse momentum is integrated over, then
the unsuppressed asymmetry will average to zero and the
diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order
'called #L

%*) in the quark-scalar diquark model which was
used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be
softened to simulate a hadronic bound state by differentiating
the wave function formally with respect to a parameter such
as the proton mass.( As indicated earlier, no nonzero f 1T

! and
h1

! will arise from #L
%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-
actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .
Our results agree with those recently obtained in the same
model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!L
"#…

As indicated in Fig. 4 the initial proton has its momentum
given by P&!(P",P#,P!)!(P",M 2/P" ,0!), and the fi-
nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2
"r!

2 )/P"(1#,),r!…. We use the convention a$!a0$a3,
a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)
in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m
r2#m2#*" r”"m

r2#m2 u'P ,S (#% 1
P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan
process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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