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X-GW: As I have discussed before, this conclusion must
be demonstrated, which can be derived by applying the LO
BLM/PMC procedure. A simple demonstration by using the
e↵ective coupling has been done by Stan and Hungjung al-
ready.

MM: As I have also discussed, this is not LO and it has
nothing to do with commensurate scale relations! It is a re-
definition of the µ scale in Eq.(1) and is per definition exact.
Please also see my previous comments that I have provide a
couple of times now and also do recall how the MS and MS

schemes are defined.
i.e.
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In particular:
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Since all R�’s are connected by scale-displacements,
the �-functions of aR� defined in Eq. (3) are the same in
any R�. The index � on aR� is thus redundant and we
denote it instead as aR. In this work we are only con-
cerned with R� and will therefore simply denote aR ⌘ a,
unless it appears in an ambiguous context.

We can find a power series solution in 1/ ln(µ/⇤) for
a by solving the renormalization group equation per-
turbatively. It is simplest to use the extended renor-
malization group prescription where one works with the
rescaled coupling â = �1

�0
a and rescaled logarithm L� =

�2
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ln(µ�/⇤). The solution up to O(1/L5
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where C is an arbitrary integration constant which in R�

is set to C = ln�2

0

/�
1

to reproduce the standard ⇤
MS

scale. Note that we take the asymptotic scale ⇤ = ⇤
MS

to be the same for any R�. Alternatively, one can take
the scale µ to be the same for any R�, while instead
having di↵erent asymptotic scales ⇤�.

II. OBSERVABLES IN R�

Consider an observable computed using perturbation
theory and in a scheme which we put as the references
scheme R

0

(this will be the MS for most computed quan-
tities) with the following expansion:
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where µ
0

stands for some initial renormalization scale
and Q is the scale at which the observable is measured.
The most general expansion with an extra factor an in
front of the sum for any n (i.e. the tree level ↵s powers)
can readily be derived and does not change the following
conclusions.

Since results in any R� are related by scale displace-
ments, we can derive the general expression for ⇢ in R�

by using the displacement relation:
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where we used that � = lnµ2

0

/µ2

� . The expression for ⇢ is
straightforwardly computed to any order, and in partic-
ular to order a4 it reads:
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where ri are generally functions of lnQ2/µ2

� and �, since
lnQ2/µ2

0

= lnQ2/µ2

� � �.
Since ⇢ is a physical observable, it must be independent

of the arbitrary renormalization scheme and scale. That
is,

@⇢�
@µ�

= 0 ,
@⇢�
@�

= 0 , (16)

for any �. However, the argument does no longer hold
when the infinite perturbative series has been truncated
to any finite order. This is known as the renormalization

scale ambiguity and the renormalon problem of pertur-
bative QCD. Note that the ambiguity resides in choosing


