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MM: I now show how to set the PMC scales - given Eq.(19)
is correct, this is the exact way to do it, di↵erently from the
approximative way we considered and discussed earlier. The
scales naturally depend on the coupling through the beta func-
tion.

Let’s take a look back at Eq. (19). It is easy to see
that we can resum all ri,1 terms, which come with a lin-
ear factor of �j , to all orders by setting the scales (for
simplicity, we treat the higher order �j terms later):

r
1,0a(Q1

) = r
1,0a(Q)� �(a)r

2,1

r
2,0a(Q2

)2 = r
2,0a(Q)2 � 2a(Q)�(a)r

3,1

r
3,0a(Q2

)3 = r
3,0a(Q)3 � 3a(Q)2�(a)r

4,1

...

rk,0a(Qk)
k = rk,0a(Q)2 � k a(Q)k�1�(a)rk+1,1 (21)

From the scale displacement equation (14) for a it is
straightforward to see that:
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It follows that to absorb all linear �j terms, the scales

Qk must satisfy:
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This leads to the self-consistency equation for Qk:

ln
Q2

k

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 + · · ·
(24)

To leading order (LO) we have:
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This resums all linear �j terms, but introduces higher
order �j terms as well beyond the order ak+1. Say, we
are computing an observable to order an. The scales Qk

must resum all �jrk+1,1 terms without introducing higher
order ones up to order an. This means that Qk must be
computed to Nn�(k+1)LO. Let us explicitly perform the
resummation up to a4, that is, up to NNLO. The general
expression for the NLO scale reads:

ln
Q2

k,NLO

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1

rk,0

⌘ . (26)

To find the NNLO scale, we first write the self-
consistency equation:

ln
Q2

k

Q2

=
�rk+1,1/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 +


1

3!

✓
� @2�

@a2 +
⇣

@�
@a

⌘
2

◆
+ k�1

2

�
a

@�
@a + (k � 1)(k � 2)�

2

a2

�
ln2

Q2
k

Q2 + · · ·
(27)

Then we expand the NLO scale to first order
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and replace ln Q2
k

Q2 in the denominator with this NLO expansion, while the ln2 Q2
k

Q2 is replaced with the LO expansion.
We the get:
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So far, we kept k general and thus these expressions
for Qk,LO, Qk,NLO and Qk,NNLO hold for a perturbative
expansion to any order. In the particular case, where we
are considering ⇢ to order a4, we have that:
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