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Automation Example: Static-Quark Potential
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We compute the three-loop corrections to the potential of two heavy quarks. In particular we
consider in this Letter the purely gluonic contribution which provides in combination with the
fermion corrections of Ref. [1] the complete answer at three loops.
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The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ε, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer !q 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|!q |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/!q 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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