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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β != 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β != 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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In the (physical) Gell Mann-Low scheme, the momentum scale of the running 
coupling is the virtuality of the exchanged photon; independent of initial scale.

For any other scale choice an infinite set of diagrams must be taken into 
account to obtain the correct result!

In any other scheme, the correct scale displacement must be used

2

sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly in the conventional Gell-Mann-Low scheme. With any other choice of
scale, one will recover the same result, but only after summing an infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum

polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−#q 2)/#q 2; i.e., µ2 = −#q2. Again, the renormalization scale is unique.
One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be

the same once one allows for the relative displacement of the scales of each scheme. For example, one can start with
the result in the MS scheme for spacelike argument q2 = −Q2, for the standard one-loop charged lepton pair vacuum
polarization contribution to the photon propagator using dimensional regularization:

log
µ2
MS

m2
!

= 6

∫ 1

0
dxx(1 − x) log

m2
! +Q2x(1− x)

m2
!

, (3)

which becomes at large Q2

log
µ2
MS

m2
!

= log
Q2

m2
!

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
! , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton N! vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order

βQCD
0 = 1

4π

(

11
3 NC − 2

3nf

)

→ − 1
4π

2
3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.
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Example: ee-scattering


