Properties of Light Nuclei from Lattice QCD

I. Magnetic structure of nuclei

II. Axial structure

(III. Parton structure)

William Detmold, MIT

7th Workshop of the APS Topical Group on Hadronic Physics, Washington DC Feb 1-3, 2017

Lattice nuclear structure

NPLQCD collaboration

- Pioneering the study of nuclei in LQCD
 - Spectroscopy and binding PRD 80 (2009) 074501 PRL 106 (2011) 162001 MPLA 26 (2011) 2587-2595 PRD 85 (2012) 054511 PRD 87 (2013), 034506 PRD 91 (2015), 114503

Scattering

PRL. 97 (2006) 012001 NPA 794 (2007) 62-72 PRD 81 (2010) 054505 PRL. 109 (2012) 172001 PRC 88 (2013), 024003 PRD 92 (2015),114512

Emmanuel Chan U. Washington

Will Detmold MIT

Martin Savage U. Washington

Barcelona

Kostas Orginos William & Mary

Mike Wagman U.Washington

MIT

- NPLQCD collaboration
- Nuclear structure through LQCD in presence of external fields
- I.Nuclear structure: magnetic moments, polarisabilities (A<5) PRL **113**, 252001 (2014) PRD **92**, 114502 (2015) PRL **116**, 112301 (2016)
- 2. Nuclear reactions: np \rightarrow d γ PRL **II5**, 132001 (2015)
- 3.Gamow-Teller transitions: pp \rightarrow de ν , g_A(³H) arXiv:1610.04545
- 4. Isotensor polarisability $(2\nu\beta\beta$ decay nn \rightarrow pp) arXiv:1701.03456

n

Emmanuel Chan U. Washington

Zohreh Davoudi MIT

Will Detmold

MIT

Martin Savage U. Washington

Barcelona

Kostas Orginos William & Mary

Mike Wagman U.Washington

External field method

 Hadron/nuclear energies are modified by presence of fixed external fields

• Eg: fixed B field

$$E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + (2n+1)|Q_h eB|} - \boldsymbol{\mu}_h \cdot \mathbf{B}$$

$$- 2\pi \beta_h^{(M0)} |\mathbf{B}|^2 - 2\pi \beta_h^{(M2)} \langle \hat{T}_{ij} B_i B_j \rangle + \dots$$

- QCD calculations with multiple fields enable extraction of coefficients of response
 - Magnetic moments, polarisabilities, ...
- Not restricted to simple EM fields

Magnetic field in z-direction (strength quantised by lattice periodicity)

Magnetic moments from spin splittings

$$\delta E^{(B)} \equiv E^{(B)}_{+j} - E^{(B)}_{-j} = -2\mu |\mathbf{B}| + \gamma |\mathbf{B}|^3 + \dots$$

 Extract splittings from ratios of correlation functions

$$R(B) = \frac{C_j^{(B)}(t) \ C_{-j}^{(0)}(t)}{C_{-j}^{(B)}(t) \ C_j^{(0)}(t)} \xrightarrow{t \to \infty} Z e^{-\delta E^{(B)}t}$$

 Careful to be in single exponential region of each correlator

[NPLQCD PRL **II3**, 252001 (2014)]

Magnetic moments of nuclei

[NPLQCD PRL **II3**, 252001 (2014)]

Magnetic moments of nuclei

Magnetic moments of nuclei

Magnetic Polarisabilities

[NPLQCD Phys.Rev. D92 (2015), 114502]

Second order shifts

 $E_{h;j_{z}}(\mathbf{B}) = \sqrt{M_{h}^{2} + (2n+1)|Q_{h}eB|} - \boldsymbol{\mu}_{h} \cdot \mathbf{B}$ $-2\pi\beta_{h}^{(M0)}|\mathbf{B}|^{2} - 2\pi\beta_{h}^{(M2)}\langle\hat{T}_{ij}B_{i}B_{j}\rangle + \dots$

Care required with Landau levels

Polarisabilities (dimensionless units)

Thermal Neutron Capture Cross-Section

[NPLQCD PRL 115, 132001 (2015)]

 $d = np ({}^{3}S_{1})$

- Thermal neutron capture cross-section: $np \rightarrow d\gamma$
 - Critical process in Big Bang Nucleosynthesis
 - Historically important: MEC contributions ~10%
 - First LQCD nuclear reaction!

np $(|S_0)$

NPLQCD arXiv:1610.04545

- Background axial field
- Axial coupling to NN system
 - $pp \rightarrow de^+ v$ fusion
 - Muon capture: MuSun @ PSI
 - $d \mathbf{v} \rightarrow nne+: SNO$
- Tritium half-life
 - Understand multi-body contributions to (GT): better predictions for decay rates of larger nuclei

Example: fixed magnetic field \rightarrow moments, polarisabilities **Axial case:** fixed axial background field \rightarrow axial charges, GT matrix elts.

Construct correlation functions from propagators modified in axial field

[NPLQCD Nucl. Phys. A743, 170 (2004)]

Tritium β decay

Tritium decay half life

known from theory or expt.

Biggest uncertainty in

 $g_A \langle \mathbf{GT} \rangle = \langle {}^{\mathbf{3}} \mathrm{He} | \overline{\mathbf{q}} \gamma_k \gamma_5 \tau^- \mathbf{q} | {}^{\mathbf{3}} \mathrm{H} \rangle$

 Form ratios of correlators to cancel leading timedependence:

$$\frac{\overline{R}_{^{3}\mathrm{H}}(t)}{\overline{R}_{p}(t)} \xrightarrow{t \to \infty} \frac{g_{A}(^{3}\mathrm{H})}{g_{A}} = \langle \mathbf{GT} \rangle$$

Axial background field mixes ³S₁, ¹S₀ states

Extract matrix element through linear response of ${}^{3}S_{1} \rightarrow {}^{1}S_{0}$ correlators to the background field

matrix elt. is linear in λ_u

Calculate correlators at multiple values of λ_u , λ_d extract matrix element pieces

Form ratios of compound correlators to cancel leading time-dependence transition pieces linear in λ_u-λ_d

$$R_{{}^{3}\!S_{1},{}^{1}\!S_{0}}(t) = \frac{\left|C_{\lambda_{u},\lambda_{d}=0}^{({}^{3}\!S_{1},{}^{1}\!S_{0})}(t)\right|_{\mathcal{O}(\lambda_{u})} - C_{\lambda_{u}=0,\lambda_{d}}^{({}^{3}\!S_{1},{}^{1}\!S_{0})}(t)\right|_{\mathcal{O}(\lambda_{d})}}{\sqrt{C_{\lambda_{u}=0,\lambda_{d}=0}^{({}^{3}\!S_{1},{}^{3}\!S_{1})}(t)C_{\lambda_{u}=0,\lambda_{d}=0}^{({}^{3}\!S_{1},{}^{3}\!S_{0})}(t)}}$$

 Fit a constant to the 'effective matrix element plot' at late times

$$\begin{array}{c} R_{{}^{3}S_{1},{}^{1}S_{0}}(t+1) - R_{{}^{3}S_{1},{}^{1}S_{0}}(t) \\ \xrightarrow{t \to \infty} \frac{\langle {}^{3}S_{1}; J_{z} = 0 | A_{3}^{3} | {}^{1}S_{0}; I_{z} = 0 \rangle}{Z_{A}} \end{array}$$

Low-energy cross section for $pp \rightarrow de^+ \nu$ dictated by the matrix element

$$\left|\left\langle d; j \left| A_{k}^{-} \right| pp \right\rangle\right| \equiv g_{A} C_{\eta} \sqrt{\frac{32\pi}{\gamma^{3}}} \Lambda(p) \,\delta_{jk}$$

- Relate $\Lambda(0)$ to extrapolated LEC using EFT $\Lambda(0) = \frac{1}{\sqrt{1 \gamma\rho}} \{e^{\chi} \gamma a_{pp} [1 \chi e^{\chi} \Gamma(0, \chi)] + \frac{1}{2} \gamma^2 a_{pp} \sqrt{r_1 \rho} \} \frac{1}{2g_A} \gamma a_{pp} \sqrt{1 \gamma\rho} L_{1,A}^{sd-2b}$ extrapolated lettice value
- Determine L_{I,A} (two body contribution N²LO #EFT in dibaryon approach)
 - npdγ suggests weak mass dependence of two-body counterterms so extrapolate to physical point

Butler and Chen, Phys. Lett. B520, 87 (2001) Detmold and Savage, Nucl. Phys. A743, 170 (2004).

Sommerfield factor

Deuteron binding mtm

 C_n

Fusion cross section dictated by

 $\Lambda(0) = 2.6585(6)(72)(25)$

E. G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

 $\Lambda(0) = 2.652(2)$

(models/EFT)

Fig: Z Davoudi

Relevant counter-term in EFT

 $L_{1,A} = 3.9(0.1)(1.0)(0.3)(0.9) \text{ fm}^3$

 $L_{1,A} = 3.6(5.5) \text{ fm}^3$ (reactor expts.)

M. Butler, J.-W. Chen, and P.Vogel, Phys. Lett. B549

Second order weak interactions

NPLQCD arXiv:1701.03456, 1702.XXXXX

- Background axial field to second order
 - nn→pp transition matrix element $M_{GT}^{2\nu} = 6 \int d^4x d^4y \langle pp|T \left[J_3^+(x)J_3^+(y)\right] |nn\rangle$ introduces a host of technical LQCD complications
 - Non-negligible deviation from long distance deuteron intermediate state contribution
 Isotensor axial polarisability

$$M_{GT}^{2\nu} = -\frac{|M_{pp\to d}|^2}{E_{pp} - E_d} + \beta_A^{(I=2)}$$

- Quenching of g_A in nuclei is insufficient!
- TBD: connect to EFT for larger systems

EMC effect

 EFT methods show PDFs of nuclei are factorisable (up to higher order effects)

[Chen, WD 04, Chen, WD, Lynn, Schwenk 16]

$$F_2^A(x) = A \left[F_2(x) + g_2(A) f_2(x) \right]$$

$$\langle x^n \rangle_{q|A} = \langle x^n \rangle_q \left[A + \alpha_n \langle A | (N^{\dagger} N)^2 | A \rangle \right]$$

- Background twist-2 fields to access moments of PDFs in light nuclei
 - Calculations under way for low moments of quark <u>and gluon</u> PDFs in light nuclei

Nuclear physics from the ground up

- Nuclei are under serious study directly from QCD
 - Spectroscopy of light nuclei and exotic nuclei (strange, charmed, ...)
 - Structure: magnetic moments and polarisabilities, axial charges
 - Electroweak interactions: thermal capture, pp fusion, $\beta\beta$ decay
- Prospect of a quantitative connection to QCD makes this a very exciting time
 - Nuclear matrix elements important to experimental program
 - Learn many interesting things about nuclear physics along the way

