Properties of Light Nuclei from Lattice QCD

I. Magnetic structure of nuclei
II.Axial structure
(III. Parton structure)

William Detmold, MIT

- NPLQCD collaboration
- Pioneering the study of nuclei in LQCD
- Spectroscopy and binding

PRD 80 (2009) 07450।
PRL I06 (201 I) I 6200 I
MPLA 26 (201।) 2587-2595
PRD 85 (2012) 05451 I
PRD 87 (20|3), 034506
PRD 9| (20|5), I 14503

- Scattering

PRL. 97 (2006) 01200 I
NPA 794 (2007) 62-72
PRD 8 I (2010) 054505
PRL. I 09 (2012) I7200|
PRC 88 (20|3), 024003
PRD 92 (20|5), I 145 I2

- NPLQCD collaboration

- Nuclear structure through LQCD in presence of external fields
I.Nuclear structure: magnetic moments, polarisabilities ($\mathrm{A}<5$) PRLII3, 25200I (2014)
PRD 92, I 14502 (20|5)
PRLII6, 112301 (2016)

2. Nuclear reactions: $\mathrm{np} \rightarrow \mathrm{d} \gamma$ PRL II5, I3200I (2015)
3. Gamow-Teller transitions: $\mathrm{pp} \rightarrow \mathrm{dev}, \mathrm{g}_{\mathrm{A}}\left({ }^{3} \mathrm{H}\right)$ arXiv: 1610.04545
4. Isotensor polarisability ($2 v \beta \beta$ decay $\mathrm{n} \cap \rightarrow \mathrm{PP})$ arXiv:I701.03456

- Hadron/nuclear energies are modified by presence of fixed external fields
- Eg: fixed B field

$$
\begin{aligned}
E_{h ; j z}(\mathbf{B})= & \sqrt{M_{h}^{2}+(2 n+1)\left|Q_{h} e B\right|}-\mu_{h} \cdot \mathbf{B} \\
& \quad-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
\end{aligned}
$$

- QCD calculations with multiple fields enable extraction of coefficients of response
- Magnetic moments, polarisabilities, ...
- Not restricted to simple EM fields

- Magnetic field in z-direction (strength quantised by lattice periodicity)
- Magnetic moments from spin splittings

$$
\delta E^{(B)} \equiv E_{+j}^{(B)}-E_{-j}^{(B)}=-2 \mu|\mathbf{B}|+\gamma|\mathbf{B}|^{3}+\ldots
$$

- Extract splittings from ratios of correlation functions

$$
R(B)=\frac{C_{j}^{(B)}(t) C_{-j}^{(0)}(t)}{C_{-j}^{(B)}(t) C_{j}^{(0)}(t)} \stackrel{t \rightarrow \infty}{\longrightarrow} Z e^{-\delta E^{(B)} t}
$$

- Careful to be in single exponential region of each correlator

[NPLQCD PRL II3, 25200I (2014)]

Magnetic moments of nuclei

Energy shift vs B

Magnetic moments of nuclei

Energy shift vs B

In units of appropriate nuclear magnetons (heavy M_{N})
[NPLQCD PRL II3, 25200I (2014)]

Magnetic moments of nuclei

- Numerical values are surprisingly interesting
- Shell model expectations

- Lattice results appear to suggest heavy quark nuclei are shell-model like!

In units of appropriate nuclear magnetons (heavy M_{N})
[NPLQCD PRL II3, 25200I (2014)]

Magnetic Polarisabilities

[NPLQCD Phys.Rev. D92 (20|5), | | 4502]

Care required with Landau levels

- Polarisabilities (dimensionless units)

[NPLQCD PRL | | 5, |3200| (20|5)]

- Thermal neutron capture cross-section: $\mathrm{np} \rightarrow \mathrm{d} \gamma$
- Critical process in Big Bang Nucleosynthesis
- Historically important: MEC contributions ~10\%
- First LQCD nuclear reaction!

Axial Background Field

NPLQCD arXiv: 1610.04545

- Background axial field
- Axial coupling to NN system
- $p p \rightarrow d e^{+} v$ fusion
- Muon capture: MuSun @ PSI

- $d v \rightarrow n n e+: S N O$
- Tritium half-life
- Understand multi-body contributions to $\langle\mathbf{G T}\rangle$: better predictions for decay rates of larger nuclei

Example: fixed magnetic field \rightarrow moments, polarisabilities
Axial case: fixed axial background field \rightarrow axial charges, GT matrix elts.
Construct correlation functions from propagators modified in axial field

$$
\begin{aligned}
& \text { compound propagator } S_{\lambda}^{(q)}(x, y)=S^{(q)}(x, y)+\lambda_{q} \int d z S^{(q)}(x, z) \gamma_{3} \gamma_{5} S^{(q)}(z, y)
\end{aligned}
$$

Linear response axial matrix element

Axial Background Field

Tritium β decay

- Tritium decay half life

$$
\frac{\left(1+\delta_{R}\right) f_{V}}{K / G_{V}^{2}} t_{1 / 2}^{\text {half-life }}=\frac{1}{\langle\mathbf{~ v e c t o r ~ M E ~}} \frac{\text { axial ME }}{\langle \rangle^{2}+f_{A} / f_{V} g_{A}^{2}\langle\mathbf{G T}\rangle^{2}}
$$

known from theory or expt.

- Biggest uncertainty in

$$
\left.g_{A}\langle\mathbf{G T}\rangle=\left.\left\langle{ }^{\mathbf{3}} \mathrm{He}\right| \overline{\mathbf{q}} \gamma_{\mathbf{k}} \gamma_{\mathbf{5}} \tau^{-} \mathbf{q}\right|^{\mathbf{3}} \mathrm{H}\right\rangle
$$

- Form ratios of correlators to cancel leading timedependence:

$$
\frac{\bar{R}_{3_{\mathrm{H}}}(t)}{\bar{R}_{p}(t)} \xrightarrow{t \rightarrow \infty} \frac{g_{A}\left({ }^{3} \mathrm{H}\right)}{g_{A}}=\langle\mathbf{G} \mathbf{T}\rangle
$$

- Axial background field mixes ${ }^{3}{ }^{3}$, ${ }^{\prime}$, S_{0} states

$$
H=\left(\begin{array}{c:cc}
\bullet \rightarrow 0 & \ddots \rightarrow O \\
\hdashline \because+0 & \ddots & 0
\end{array}\right)
$$

- Extract matrix element through linear response of ${ }^{3} S_{1} \rightarrow{ }^{\prime} S_{0}$ correlators to the background field

$$
\text { matrix elt. is linear in } \lambda_{u}
$$

- Calculate correlators at multiple values of λ_{u}, λ_{d}
\rightarrow extract matrix element pieces
- Form ratios of compound correlators to cancel leading time-dependence

$$
\text { transition pieces linear in } \lambda_{u}-\lambda_{d}
$$

$$
R_{{ }_{3} S_{1},{ }^{1} S_{0}}(t)=\frac{\left.C_{\lambda_{u}, \lambda_{d}=0}^{\left({ }^{3} S_{1},{ }^{1} S_{0}\right)}(t)\right|_{\mathcal{O}\left(\lambda_{u}\right)}-\left.C_{\lambda_{u}=0, \lambda_{d}}^{\left({ }^{3} S_{1},{ }^{1} S_{0}\right)}(t)\right|_{\mathcal{O}\left(\lambda_{d}\right)}}{\sqrt{C_{\lambda_{u}=0, \lambda_{d}=0}^{\left({ }^{3} S_{1},{ }^{3} S_{1}\right)}(t) C_{\lambda_{u}=0, \lambda_{d}=0}^{\left(1 S_{0},{ }^{1} S_{0}\right)}(t)}}
$$

diagonal pieces with no field
constant fit to plateau region

Fit a constant to the 'effective matrix element plot' at late times

$$
\begin{aligned}
& R_{3_{S_{1},}{ }^{1} S_{0}}(t+1)-R_{3}{ }_{S_{1}, 1}{ }^{1}{ }_{S}{ }_{0}(t) \\
& \xrightarrow{t \rightarrow \infty} \xrightarrow{\left\langle{ }^{3} S_{1} ; J_{z}=0\right| A_{3}^{3}\left|{ }^{1} S_{0} ; I_{z}=0\right\rangle} \\
& Z_{A}
\end{aligned}
$$

- Low-energy cross section for $p p \rightarrow d e^{+} \nu$ dictated by the matrix element

$$
\left.\left|\langle d ; j| A_{k}^{-}\right| p p\right\rangle \left\lvert\, \equiv g_{A} C_{\eta} \sqrt{\frac{32 \pi}{\gamma^{3}}} \Lambda(p) \delta_{j k}\right.
$$

- Relate $\Lambda(0)$ to extrapolated LEC using EFT

$$
\begin{array}{ll}
\Lambda(0)=\frac{1}{\sqrt{1-\gamma \rho}}\left\{e^{\chi}-\gamma a_{p p}\left[1-\chi e^{\chi} \Gamma(0, \chi)\right]+\right. & \\
\left.\frac{1}{2} \gamma^{2} a_{p p} \sqrt{r_{1} \rho}\right\}-\frac{1}{2 g_{A}} \gamma a_{p p} \sqrt{1-\gamma \rho} L_{1, A}^{s d-2 b}< & \begin{array}{l}
\text { extrapolated } \\
\text { lattice value }
\end{array}
\end{array}
$$

- Determine $L_{l, A}$ (two body contribution - N2LO đtEFT in dibaryon approach)
- npdy suggests weak mass dependence of two-body counterterms so extrapolate to physical point
- Fusion cross section dictated by

$$
\Lambda(0)=2.6585(6)(72)(25)
$$

$\Lambda(0)=2.652(2)$
E. G. Adelberger et al., Rev. Mod. Phys. 83, 195 (201I)

Fig: Z Davoudi

- Relevant counter-term in EFT

$$
L_{1, A}=3.9(0.1)(1.0)(0.3)(0.9) \mathrm{fm}^{3}
$$

$L_{1, A}=3.6(5.5) \mathrm{fm}^{3}$ (reactor expts.)
M. Butler, J.-W. Chen, and P.Vogel, Phys. Lett. B549

Axial Background Field

- Background axial field to second order
- $\mathrm{nn} \rightarrow \mathrm{pp}$ transition matrix element

$$
M_{G T}^{2 \nu}=6 \int d^{4} x d^{4} y\langle p p| T\left[J_{3}^{+}(x) J_{3}^{+}(y)\right]|n n\rangle
$$

introduces a host of technical LQCD complications

- Non-negligible deviation from long distance deuteron intermediate state contribution

Isotensor axial polarisability

$$
M_{G T}^{2 \nu}=-\frac{\left|M_{p p \rightarrow d}\right|^{2}}{E_{p p}-E_{d}}+\beta_{A}^{(I=2)}
$$

- Quenching of g_{A} in nuclei is insufficient!
- TBD: connect to EFT for larger systems

- EFT methods show PDFs of nuclei are factorisable (up to higher order effects) [Chen, WD 04, Chen, WD, Lynn, Schwenk 16]

$$
F_{2}^{A}(x)=A\left[F_{2}(x)+g_{2}(A) f_{2}(x)\right]
$$

$$
\left\langle x^{n}\right\rangle_{q \mid A}=\left\langle x^{n}\right\rangle_{q}\left[A+\alpha_{n}\langle A|\left(N^{\dagger} N\right)^{2}|A\rangle\right.
$$

- Background twist-2 fields to access moments of PDFs in light nuclei
- Calculations under way for low moments of quark and gluon PDFs in light nuclei
- Nuclei are under serious study directly from QCD
- Spectroscopy of light nuclei and exotic nuclei (strange, charmed, ...)
- Structure: magnetic moments and polarisabilities, axial charges
- Electroweak interactions: thermal capture, pp fusion, $\beta \boldsymbol{\beta}$ decay
- Prospect of a quantitative connection to QCD makes this a very exciting time
- Nuclear matrix elements important to experimental program
- Learn many interesting things about nuclear physics along the way

