Intrinsic Charm at LHCb

Philip Ilten on behalf of the LHCb Collaboration

Massachusetts Institute of Technology

LHCD

February 1, 2017

7th Workshop of the APS Topical Group on Hadronic Physics

Overview

- detector overview
- intrinsic charm with Z + c
- intrinsic charm using the System for Measuring the Overlap with Gas (SMOG)
- J/ψ production in jets

Introduction

Detector

JINST 3 (2008) S08005

- fully instrumented between $2 < \eta < 5$
- momentum resolution between 0.5% at 5 GeV to 1% at 200 GeV
- impact parameter resolution of $13-20~\mu{\rm m}$ for tracks
- secondary vertex precision of 0.01 0.05(0.1 0.3) mm in xy(z)

Introduction

• projected luminosity per run

LHC era			HL-LHC era		
Run 1(a) 2011	Run 1(b) 2012	Run 2 2015 - 2019	Run 3 2021 - 2023	Run 4 2027 - 2029	Run 5 2031 - ?
$1 \ {\rm fb}^{-1}$	2 fb^{-1}	$5 {\rm ~fb^{-1}}$	$15~{\rm fb}^{-1}$	$23 { m fb}^{-1}$	$54 { m fb^{-1}}$

- LHCb upgrade during LS 2
 - LHCb-PUB-2014-040
 - replacement of readouts and photo-detectors for the RICHs
 - replacement of tracking detectors
 - full software trigger, see LHCb-TDR-016
 - currently limited by hardware readout at 1 MHz
 - upgrade will read out entire detector at 40 MHz

Intrinsic Charm with Z + c

Bjorken-x Coverage

- parton distribution function (PDF) parameter space in Q^2 and x

Intrinsic Charm PDFs

Phys. Rev. D **93**, no. 3, 033006 (2016)

- consider two models from CT14
 - BHPS: valence-like via the light-cone picture of nucleon structure
 - SEA: sea-like assuming IC $\propto [\bar{u}(x, Q_0) + \bar{d}(x, Q_0)]$ for $Q_0 < m_c$
- two normalization points, $\langle x \rangle_{\rm IC} \equiv \int_0^1 x {\rm IC}(x, m_c) dx$
 - 1: $\langle x \rangle_{\rm IC} = 0.6\%$
 - 2: $\langle x \rangle_{\rm IC} \approx 2\%$ (maximally allowed from global fit)

Intrinsic Charm at LHCb

${\cal Z}$ Production with Charm

• measure ratio of Z + c-jet to Z+jet

• not all Z + c-jet final states from intrinsic charm

Jet Tagging

JINST 10 (2015) P06013

Intrinsic Charm at LHCb

BDT Separation

JINST 10 (2015) P06013

- BDT(bc|udsg): c and b as signal, udsg as background
- BDT $(\boldsymbol{b}|c)$: **b** as signal c as background
- fit 2-dimensional BDT(bc|udsg) versus BDT(b|c) distribution

Efficiencies

JINST 10 (2015) P06013

Charm-Tagging Measurements

- JINST 10 (2015) P06013: validation of performance
- Phys. Rev. D 92 (2015): W + c and W + b measurement
- Phys. Rev. Lett. 115 (2015): first forward top measurement
- arXiv:1610.08142: $t\bar{t}$ and $W + Q\bar{Q}$

Expected Sensitivity

Phys. Rev. D **93**, no. 7, 074008 (2016)

SMOG

- used for precision luminosity measurements using beam gas imaging (uncertainty of 1.16%)
- at $\sqrt{s} = 110 \text{ GeV}$ $y = y_{\text{com}} + 4.77$

JINST 9 P12005 (2014)

type	\sqrt{s} [GeV]	year	time
$p \mathrm{Ne}$	87	2012	30m
PbNe	54	2013	30m
$p \mathrm{Ne}$	110	2015	12h
p He	110	2015	7h
$p \mathrm{Ar}$	110	2015	20h
pAr	69	2015	11h
PbAr	69	2015	100h
p He	110	2016	20h
$p \mathrm{He}$	87	2016	87h

Intrinsic Charm at LHCb

Bjorken-x Coverage

- parton distribution function (PDF) parameter space in Q^2 and x

Intrinsic Charm PDFs

Phys. Rev. D **93**, no. 3, 033006 (2016)

• test with open and hidden-charm production, Q of m(D)

Measurements

JHEP **1603**, 159 (2016) JHEP **1510**, 172 (2015)

- open and hidden-charm cross-sections with pp data
- use the $J/\psi[\mu\mu]$, $D^0[K^+\pi^-]$, and $D^+[K^+\pi^-\pi^+]$ channels

Ilten

Intrinsic Charm at LHCb

February 1, 2017 19 / 25

Future Measurements

- same measurements but with pHe and pAr data
- rough predictions in LHCb acceptance from PYTHIA 8

Ilten

Intrinsic Charm at LHCb

February 1, 2017

J/ψ Production in Jets

Two Pictures

arXiv:1701.05116

- understanding prompt J/ψ critical for intrinsic charm
- prompt J/ψ calculated with non-relativistic QCD (NRQCD)
- two pictures on how NRQCD is used
 - NRQCD hard process, octet states showered with QCD splittings
 - shower with NRQCD splittings, match with hard process

- utilize J/ψ trigger that writes out fully reconstructed event
- use jets with $p_{\rm T} > 20$ GeV which contain a J/ψ

Results

arXiv:1701.05116

- measure $z \equiv p_{\rm T}(J/\psi)/p_{\rm T}({\rm jet})$
- separate into prompt and displaced contributions

- PYTHIA 8 implements the LO hard process picture
- not the end of the story, need different predictions

Outlook

$\operatorname{Outlook}$

Outlook

- forward detector with diverse datasets
- robust and efficient c(b)-tagging algorithm validated against data
- intrinsic charm studies underway both with pp and pAr
- rule out BHSP models at $\langle x \rangle_{\rm IC} \approx 1\%$... or demonstrate IC!

Thank you!

I discover intrinsic charm where I wish and none dare resist. - SMOG (if SMOG were Smaug)