

PAC44 July 25, 2016

Publications, Students, Postdocs

Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

Phys. Rev. Lett. 115, 152001 (2015) (E07-002)

Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

Phys Rev X - arXiv:1509:06642

High Resolution Spectroscopy of ¹⁰ Be

Phys. Rev. C 93, 034314 (2016) (E05-115)

Measurements of the Separated Longitudinal Structure Function F_L from Hydrogen and Deuterium Targets at low Q^2

ArXiv:1606.02614 (E00-002)

Spectroscopy of neutron-rich hypernucleus, ⁷ He by electron beam

ArXiv:1606.09157

Direct Measurements of the Lifetime of Heavy Hypernuclei (submitted)

The Aerogel Cherenkov Detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

ArXiv:1607.05264

SANE: Luwani Ndukum (MSU)

Qweak: Joshua Magee (W&M), Siyuan Yang (W&M), Joshua Hoskins (W&M), Don Jones (UVA), Emmanouil Kargiantoulakis (UVA), Juan Carlos Cornejo (W&M) (6 remaining)

Postdocs: Joint A/C/EIC: Kijun Park, Hall C postdocs: Jure Bericic, Eric Pooser

Beam in Hall

Beam delivered to Hall C dump swing shift, Tuesday, May 17

3H07 viewer

RadCon test executed Wednesday afternoon

Checked out Hall C fast raster

Quad polarity checks Wednesday evening

No Physics equipment tested.

https://logbooks.jlab.org/entry/3405141

Compton, Moller, Beamline upgrade

SHMS Magnets

5 SC Magnets: HB, Q1, Q2, Q3, D

Q1/HB installation/testing complete, collimator box installed.

Cryocan for Dipole delivered.

Q2 done, shipping prep – Norfolk Sep 2

Dipole, Q3 ship in Sept/Oct

SHMS Detectors

SHMS Detectors

SHMS Preshower and Shower Counter installed Instrumented with Flash ADC DAQ

Heavy Gas Cerenkov Installed

Aerogel installed

Hodoscope (scintillator and quartz) installed

Checkout/gain matching in progress with sources

and cosmics in progress.

Thomas Jefferson National Accelerator Facility

SHMS Detectors - Aerogel

Good performance with cosmic ray tests with tray of n=1.03 Aerogel with "wrong way" muons.

Exchangeable Aerogel trays: n = 1.030, 1.020, 1.015, 1.011

Now installed in SHMS

SHMS Detectors

Noble gas Cerenkov and wire chambers (2+spare) in Experimental Staging Building (Install after dipole installation?)

HMS Checkout and DAQ setup

Exercising HMS magnets
Will test to ~ 7 GeV/c

Checkout/recommission HMS detectors

Installing modern DAQ

All new front end electronics

HMS Drift Chambers – repair and replacement

HMS Drift Chamber Chambers

One of two existing chambers has broken wires

Undergoing repair

Replacement Chambers Designed
Similar to SHMS design (XUV style)
Under construction at Hampton U
1 chamber completed

Accelerator Facility

Polarized ³He

 A_1^n (E12-06-110) and g_2^n/d_2^n (E12-06-121)

Preparations for polarized ³He target in Hall C
Cut and reassemble pivot post
Access platform in fabrication
Oven designed

Thomas Jeffer

LAD – Large Acceptance Detector

E12-11-007: Deuteron EMC – d(e,e' backward p)

Very large solid angle for $L = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$ and $\theta > 90^{\circ}$

Optimized for medium momentum nucleons $0.3 \le p_N \le 0.7 \text{ GeV/}c$

Built from old CLAS-6 TOF scintillators. Three planes refurbished @ODU by ODU, KSU, TAU, MIT, GWU. Fourth plane in progress.

Now only 5 planes needed [d(e,e'n) -> Hall B]

Neutral Particle Spectrometer (π^0/γ)

NPS Status

- ☐ Global design of a neutral-particle spectrometer between 5.5 and 60 degrees consists of a highly segmented EM calorimeter preceded by a sweeping magnet
- 2015 NSF/MRI funding proposal was selected for an award
 - Award will provide for NPS infrastructure, including the magnet, assuming existing crystals
 - In the ideal case the NPS would use new crystals
 - Application for UK grant with emphasis on additional equipment aimed at WACS requirements submitted
- □ Significant efforts of the NPS collaboration have recently been related to PbWO₄ crystals
 - ➤ 10+5 PbWO4 crystals produced by SICCAS have been tested for optical properties and radiation hardness; 30 more crystals on order
 - Infrastructure for crystal testing being developed at IPN-Orsay and CUA
 - Close collaboration with Giessen University on crystal evaluation, as well as Caltech and BNL thomas Jefferson National Accelerator Facility

5 Experiments approved

E12-13-007: π⁰ SIDIS

E12-13-010: DVCS and pi0 cross sections

E12-14-003: WACS at 8 and 10GeV E12-14-005: Wide angle exclusive π^0

E12-14-006: Initial state helicity correlation in WACS

Hall/Collaboration developing cabling (HV/Signal, 1200@) scheme for NPS and other detectors (GeN, LAD)

More info in the NPS Wiki: https://wiki.jlab.org/cuawiki/

Commissioning/Early Experiments

Published schedule: Feb 10-Apr 9, 2017

~25 PAC days – Commissioning "Experiment"

E12-06-107 search for color transparency

A(e,e'p) only – "easy" coincidence measurement

E12-10-002 F₂^{p,d} structure functions at large x

Momentum scans help understand acceptance

Integrate light nuclei with F₂ run,

Point target helps acceptance studies.

3 days of E12-10-003 d(e,e'p)

Push to lower cross sections

Published schedule: Apr 13 – Dec 20, 2017 (with breaks)

E12-09-017 P_t dependence of basic SIDIS cross sections

Push particle ID capabilities of SHMS

E12-09-002 Precise $\pi^+\pi^-$ ratios in SIDIS – Charge Symmetry Detector efficiencies

E12-09-011 L/T separated p(e,e'K+) factorization test

Easiest L/T separation

Thomas Jefferson National Acc

A(e,e'p) @ 11 GeV JLab

