Measurements of the Flavor Dependence of the EMC Effect Using Parity-Violating Deep Inelastic Scattering

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

July 27, 2016

Collaboration

Spokespeople

- Seamus Riordan Stony Brook University
- John Arrington Argonne National Laboratory
- Rakitha Beminiwattha Syracuse

A. Deshpunde, N. Hriffinger, Sayler, K. S. Kumar, T. Kar, S. Rodalan¹, and Y.X. Zhao Saway Baok University of the strength of the strengt

Acadia University

K. Aniol California State University, Los Angeles

H. Gao, X. Li, T. Liu, C. Peng, W. Xiong, X. Yan, and Z. Zhao Duke University

> P. Markowitz and M. Sargsian Florida International University

S. P. Wells and N. Simicevic Louisiana Tech University

A. Aleksejevs Grenfell Campus of Memorial University

> N. Kalantarians Hampton University

D. McNulty Idaho State University

V. Bellini, C. Sutera INFN - Sezione di Catania J. Beričič, S. Širca, and S. Štajner Jožef Stefan Institute and University of Ljubljana, Slovenia

> O. Hen Massachusetts Institute of Technology

J. Dunne, D. Dutta and L. El Fassi Mississippi State University

P. M. King and J. Roche Ohio University, Athens, Ohio

R. Gilman, K. E. Mesick Rutgers University

J. Benesch, A. Camsonne, J. P. Chen, S. Covrig, D. Gaskell, J.-O. Hansen, C. E. Keppel Thomas Jefferson National Accelerator Facility

> A. J. Puckett University of Connecticut

P. Blunden University of Manitoba

R. Miskimen University of Massachusetts, Amherst

X. Bai, D. Di, C. Gal, K. Gnanvo, C. Gu, N. Liyanage, H. Nguyen, K. D. Paschke, V. Sulkosky, and X. Zheng University of Virginia

> F. R. Wesselmann Xavier University of Louisiana A. W. Thomas University of Adelaide, Australia

and the SoLID Collaboration

Seamus Riordan — PAC 44 EMCPVDIS 2/18

QCD in Nucleons and Nuclei

QCD Questions

- How do we reconcile the picture of quarks and gluons with nucleons and nuclei?
- What is the nature of bound nucleons and how are they modified?
- Is there a direct connection between nuclear and parton-level modification observables?

DIS with leptons offers picture into partonic distributions

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha E'^2}{Q^4} \cos^2\frac{\theta}{2} \left(\frac{F_2(x,Q^2)}{\nu} + \frac{2F_1(x,Q^2)}{M} \tan^2\frac{\theta}{2}\right)$$

$$F_2(x, Q^2) = x \sum_q e_q^2 \left(q(x, Q^2) + \bar{q}(x, Q^2) \right),$$

 $F_L \approx F_2 - 2xF_1$

- Highly successful for our modern picture of quark degrees of freedom and pQCD
- PDFs have been well determined over a broad range after decades of study

DIS with leptons offers picture into partonic distributions

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha E'^2}{Q^4} \cos^2\frac{\theta}{2} \left(\frac{F_2(x,Q^2)}{\nu} + \frac{2F_1(x,Q^2)}{M} \tan^2\frac{\theta}{2}\right)$$

$$F_2(x, Q^2) = x \sum_q e_q^2 \left(q(x, Q^2) + \bar{q}(x, Q^2) \right),$$

 $F_L \approx F_2 - 2xF_1$

- Highly successful for our modern picture of quark degrees of freedom and pQCD
- PDFs have been well determined over a broad range after decades of study

PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$A_{\rm PV} \sim rac{\left|\left|\left|\left|\right|^{r}\right|^{r}\right|^{r}}{\left|\left|\left|\right|^{r}\right|^{r}} \sim 100 - 1000 \text{ ppm}$$

$$\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

Effective Weak Couplings

$C_{1u} = -\frac{1}{2}$	$\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19$	$C_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03$
$C_{1d} = $	$\frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34$	$C_{2d} = \frac{1}{2} + 2\sin^2\theta_W = 0.03$

PVDIS

PVDIS proves new flavor combinations \rightarrow isovector properties

$$\approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right], y = 1 - \frac{E'}{E}$$

Symmetric nucleus limit

$$a_1 \simeq \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25}\frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + \dots$$

where $u_A = u$ in p and u in n

Nuclear Modification

- First observed in 1984 by EMC collaboration
- Showed reduced presence of partons in 0.3 < x < 0.7
- Generally greater effect as one pushes to higher *A*
- Not due to simple binding effects real modification of structure

General assumption of $u \leftrightarrow d$ for $p \leftrightarrow n$ PVDIS can test this

J. Gomez et *al., PRD49 4348* (1994) • Neutrino scattering (charged current and neutral current) is sensitive to different flavor combinations

- Asymmetric nuclei (iron) need corrections
- CSV or IVEMC could play very important role and are not well constrained by data

Isovector Dependence? - SRC

- SRC show strong preference to n-p pairs over p-p pairs
- Also show strong correlation to "plateau" parameter for x > 1 SFs

Isovector Dependence? - SRC

- SRC show strong preference to n-p pairs over p-p pairs
- Also show strong correlation to "plateau" parameter for x > 1 SFs
- Preliminary models make predictions of deviations for asymmetric nuclei

Arrington, EPJ Web Conf. 113, 01011 (2016)

Modeling - CBT Model

- Cloet et *al.* make predictions based on mean field calculations which give reasonable reproductions of SFs
- Explicit isovector terms are included constrained by nuclear physics data such as the symmetry energy
- Few percent effect in a₂, larger at larger x

Cloet et al. PRL102 252301 (2009), Cloet et al. PRL109 182301 (2012)

Seamus Riordan — PAC 44 EMCPVDIS 9/18

Where to get constraint

- Neutral currents will provide access to isovector observables
- ullet Present data demands $\sim 1\%$ level for significant tests
- LD₂ will constrain CSV as isoscalar target (as well as $R^{\gamma Z}$)
- Asymmetric target will test isovector dependence larger A gives larger EMC, larger Z - N gives IV enhancement

Other Methods

-

PVDIS offers highest sensitivity and is required for full picture

	PVEMC	EMC
	(this prop.)	E12-10-008
Statistics	0.7-1.3%	0.8-1.1%
Systematics	0.5%	0.7%
Normalization	0.4%	1.4%
CBT x-dependence	5%	3%
CBT sensitivity	5.6σ	$<$ 3 σ
Seamus Riordan — PAC 4	4 EMCPVDIS	11/18

Other Methods

PVDIS offers highest sensitivity and is required for full picture

- PVDIS naturally sensitive to flavor differences
- DIS and PVDIS allows for flavor determination
- \bullet Other processes such as tagged SIDIS and π Drell-Yan offer complementary information
- Experiments such as SRC help motivate and tie into this program

Configuration

- Experimental configuration practically identical to approved SoLID PVDIS measurement
- Lead baffles serve as momentum collimators
- GEMs, Cherenkov, and calorimeter provide tracking and PID
- Rates are better or comparable to existing LD₂ measurement

- ⁴⁸Ca target provides good balance between asymmetric target and not too high Z
- Has very good thermal conductance and high melting point have operational experience with previous program and upcoming CREX
- 12% radiator photons and photoproduced pions are main background concerns

Backgrounds and Induced Radiation in the Hall

- Radiation in hall comparable to LD₂ measurement
- Backgrounds, trigger rates, etc experiment is also or better and within SoLID specifications

		Radiation Power in the Hall		
Radiation	E-Range	⁴⁸ Ca	LD_2	
Туре	(MeV)	$(W/\mu A)$	$(W/\mu A)$	
e [±]	E < 10	0.11	0.11	
	E > 10	0.18	0.16	
n	E < 10	0.0002	0.0003	
	E > 10	0.005	0.010	
γ	E < 10	0.02	0.02	
	E > 10	0.04	0.04	

GEM plane	LD ₂ background	⁴⁸ Ca EM background
	$(kHz/mm^2/\mu A)$	$({ m kHz/mm^2}/{\mu A})$
1	6.8	4.8
2	3.0	2.1
3	1.1	0.8
4	0.7	0.5

Projections

- Requesting 60 days at 80 μ A 11 GeV production (71 days total) to get \sim 1% stat uncertainties across a broad range of x
- In the context of the CBT model, this is few sigma in very simple interpolation model
- This provides new and useful constraints in a sector where there is little data

Systematics

- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- Existing free PDFS (recent CJ12) have poor d/u constraint a, - No Modification, CJ12 pdf Projected 12 GeV d/u Extractions

Systematics and Experimental uncertainties

- Polarimetry and pions are main contributions
- Radiative working group has been established for PVDIS
- Total errors:

Effect	Uncertainty [%]
Polarimetry	0.4
$R^{\gamma Z}/R^{\gamma}/HT$	0.2
Pions (bin-to-bin)	0.1-0.5
Radiative Corrections (bin-to-bin)	0.5-0.1
Total for any given bin	~0.5-0.7

• Statistical uncertainty dominates any given bin

- Nuclear modification has many open important questions for our understanding of QCD
- PVDIS on asymmetric targets offers exciting opportunity to uncover isovector dependence in modification
- 60 days production will offer critical new information, help test leading hypotheses, and help resolve the NuTeV anomaly

BACKUP

⁴⁰Ca in CJ12 nPDF fit is green curve

- Would require similar beamtime commitment (60 days)
- ⁴⁰Ca tests isoscalar prediction but isoscalar PDFs significantly cancel!
- Existing SoLID program has LD₂ planned which is sensitive to and constrains on a similar level effects such as charge symmetry violation
- ⁴⁰Ca would be useful if we need to search for effects such as modification-induced CSV - presently hard to argue for a commitment

Induced Radiation in the Hall

- $\bullet\,$ Radiation in hall comparable to LD_2 measurement
- Backgrounds, trigger rates, etc experiment is also or better and within SoLID specifications

	Radiatio		ion	Power in the Hall
Radiation	E-Range	⁴⁸ Ca		LD_2
Туре	(MeV)	(W/μA	1)	$(W/\mu A)$
e±	E < 10	0.11		0.11
	E > 10	0.18		0.16
n	E < 10	0.000	2	0.0003
	E > 10	0.005	5	0.010
γ	E < 10	0.02		0.02
	E > 10	0.04		0.04
GEM plane	LD ₂ back	ground	48	Ca EM background
	$(kHz/mm^2/\mu A)$			$(\rm kHz/mm^2/\mu A)$
1	6.8			4.8
2	3.0		2.1	
3	1.1		0.8	
4	0.7			0.5

Iron of magnet is significant shield of neutrons that contribute to site boundary limits

	⁴⁸ Ca	⁴⁸ Ca Dose	LD_2	LD_2 Dose
	Flux	(80 μA for	Flux	(50 μA for
	$(Hz/\mu A)$	60 days) (m^{-2})	$(Hz/\mu A)$	60 days) (m^{-2})
with Solenoid	2.93E+07	6.02E+12	2.62E+07	3.36E+12
Self- Shielding				
without Solenoid	5.55E+08	1.14E+14	3.53E+08	4.53E+13
Self- Shielding				

Iron of magnet is significant shield of neutrons that contribution to site boundary limits

Experiment	Estimated DOSE		Measured DOSE
	(m^{-2})	(mrem)	(mrem)
PREX-I	4.50E+12	4.2	1.3
PREX-II	5.80E+12	5.4	n/a
CREX	1.50E+13	9.2	n/a
$PVDIS\text{-}\mathrm{LD}_2$	3.40E+12	3.2	n/a
$PVDIS$ - ^{48}Ca	6.00E+12	5.6	n/a

- Black mrem numbers from radcon Blue extrapolated by us
- Have 10 mrem/yr administrative limit
- Calculated to be factor of 2 smaller than CREX

Table: Neutrons Flux at the Front of the ECAL

		⁴⁸ Ca	LD_2
	E range	Flux	Flux
	(MeV)	(Hz/cm2)	(Hz/cm2)
Neutrons	<i>E</i> < 10	1.68E+06	1.72E+06
	E > 10	3.66E+04	3.30E+04
Total		1.72E+06	1.75E+06

- Total dose (neutron and EM) similar to LD₂
- \bullet Estimated 100 kRad dose in ECal active components for LD_2, ${\sim}50$ kRad for this experiment
- Expect 20% yield loss at \sim 400 kRad

SoLID PVDIS: Power and Activation

$E_{dep}(W)/cm^3$ PVDIS, Liquid D target (100 μA)

 $Dose_{eq}(mrem)/h$ after 1*hour* from beam exposure (1 Month running time)

1 month running, 75% duty cycle, mrem on contact after 1 hour

SoLID PVDIS: Power and Activation

$E_{dep}(W)/cm^3$ PVDIS, Liquid D target (100 μA)

 $Dose_{eq}(mrem)/h$ after 1 day from beam exposure (1 Month running time)

1 month running, 75% duty cycle, mrem on contact after 1 day

Outline	Tools Used	Source	Radiation Inside the Magnet ○○○●	Power and Activation	Radiation in Hall at run-time 000	Conclusions
Rad	iation	on (Coils			

Radiation limit
$$\frac{Neutron_{(E_N > 0.1MeV)}}{cm^2} = 10^{19} \frac{N}{cm^2}$$
 for NbTi see

http://supercon.lbl.gov/WAAM/WAAM_Talks/Al%20Zeller%0WAAM.pdf

FLUKA Simulation FULL FLUX integrated in the total Coil

Also considering that FLUKA is off of an order of magnitude in this angle range, we are expecting a flux of $Neutron_{(E_N > 0.1 MeV)} = 10^{18} N$, well in the limit for NbTi

Displacement damage in Si, NIEL

What is a tolerable level for APV25 (GEM) ?

• CMS Silicon STRIP Tracker (the APV25 chip was designed for this detector) total fluence expected to peak around $2.4 \times 10^{14} \frac{1 MeV_{eq} N}{cm^2}$

• Our flux is (2000*h* at
$$100\mu A$$
)
 $2.4 \times 10^{14} \frac{1MeV_{eq}N}{cm^2} \Rightarrow 5.3 \times 10^{-8} \frac{1MeV_{eq}N}{e^{-}cm^2}$

Modeling - nPDFs

- \bullet Varying weights in fits between lepton/Drell Yan and ν can show tension between data sets
- nCTEQ fits show dramatic differences in a similar vein at CBT
- Few percent effect in a₂

Rates and Backgrounds

- Trigger defined by coincidence between Cherenkov and shower
 150 kHz total anticipated with background (well below SoLID spec)
- Pion contamination no worse than 4% in any given bin (worst at high x)
- GEM rates comparable to or smaller than design for LD₂

Particle	DAQ Coin. Trig.Rate (kHz)		
	P > 1 GeV	P > 3 GeV	
DIS e ⁻	144	61	
π^{-}	11	7	
π^+	0.4	0.2	
Total	155	68	

Isovector Dependence? - Partitioned Fits

- Existing fits to world data show controversy
- Studies partitioning data between lepton/Drell Yan and ν show significant incompatibilities in nuclear corrections using common PDFs

I. Schienbein et al. PRD77 054013 (2008); I. Schienbein et al. PRD80 094004 (2009)

GEM plane	LD ₂ background	⁴⁸ Ca EM background	⁴⁸ Ca EM background (no baffles)
	$(\rm kHz/mm^2/\mu A)$	$(\rm kHz/mm^2/\mu A)$	$(kHz/mm^2/\mu A)$
1	6.8	4.8	49.4
2	3.0	2.1	32.3
3	1.1	0.8	9.9
4	0.7	0.5	6.4

ECal Trigger Rates

region	full	high	low		
rate entering the EC (kHz)					
e ⁻	240	129	111		
π^{-}	$5.9 imes10^5$	$3.0 imes10^5$	$3.0 imes10^5$		
π^+	$2.7 imes10^5$	$1.5 imes10^5$	$1.2 imes10^5$		
$\gamma(\pi^0)$	$7.0 imes 10^7$	$3.5 imes10^7$	$3.5 imes10^7$		
p^+	$4.8 imes10^5$	$2.1 imes10^5$	$2.7 imes10^5$		
sum	$7.1 imes 10^7$	$3.6 imes10^7$	$3.6 imes10^7$		
Rate for $p < 1$ GeV (kHz)					
sum	$8.4 imes 10^{8}$	$4.2 imes10^8$	$4.2 imes 10^{7}$		
trigger rate for $p > 1$ GeV (kHz)					
e ⁻	152	82	70		
π^{-}	$4.0 imes 10^{3}$	$2.2 imes10^3$	$1.8 imes10^3$		
π^+	$0.2 imes 10^3$	$0.1 imes10^3$	$0.1 imes10^3$		
$\gamma(\pi^0)$	3	3	0		
р	$1.6 imes10^3$	$0.9 imes10^3$	$0.7 imes10^3$		
sum	$5.9 imes10^3$	$3.3 imes10^3$	$2.6 imes10^3$		
trigger rate for $p < 1$ GeV (kHz)					
sum	$2.8 imes 10^3$	$1.4 imes 10^3$	$1.4 imes 10^3$		
Total trigger rate (kHz)					
total	$8.7 imes 10^3$	$4.7 imes10^3$	$4.0 imes10^3$		

Cerenkov Trigger Rates

	Total Rate for $p > 0.0 \text{ GeV}$	Rate for $p > 3.0 \text{ GeV}$		
	(kHz)	(kHz)		
DIS	240	73		
π^{-}	$5.9 imes 10^5$	$1.6 imes 10^3$		
π^+	2.7×10^5	40		
$\gamma(\pi^0)$	$7.0 imes 10^7$	40		
р	4.8×10^5	4		
Sum	$7.1 imes 10^7$	1.7×10^3		
Trigger Rate from Cherenkov (kHz)				
	Trigger Rate for $p > 1.0 \text{ GeV}$	Trigger Rate for $p > 3.0 \text{ GeV}$		
	(kHz)	(kHz)		
DIS	223	66		
π^{-}	193	49		
π^+	22	1.6		
$\gamma(\pi^0)$	0	0		
р	0	0		
Sum	438	116		

		Incident Radiation Power		
Radiation	E-Range	⁴⁸ Ca	LD_2	
Туре	(MeV)	$(W/\mu A)$	$(W/\mu A)$	
e±	E < 10	0.13	0.13	
	E > 10	0.19	0.17	
n	E < 10	0.0001	0.0006	
	E > 10	0.02	0.04	
γ	E < 10	0.02	0.02	
	E > 10	0.04	0.05	

Systematics

- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- Existing free PDFS (recent CJ12) have poor d/u constraint a, - No Modification, CJ12 pdf Projected 12 GeV d/u Extractions

Systematics

- Many potential nuclear effects come into play as this sector is not presently well constrained
- Requires measurements from LD₂ and LH₂ for information on size of nuclear effects
- Higher twist effects will also be constrained by LD₂ using same kinematics, but also 6.6 GeV beam
- Charge symmetry violation will also be explored to better precision
- Nuclear dependence of $R^{\gamma Z}$ is an open question

