

The CaFe Experiment: Short-Range Pairing Mechanisms in Heavy Nuclei

Proposal PR12-16-004

Spokespersons:

O. Hen (MIT), L. B. Weinstein (ODU), D. Higinbotham (JLab), E. Cohen (TAU)

JLab PAC-44, July 27th, 2016.

Focused measurement of <u>short-range pairing</u> in neutron rich nuclei and dynamics of nucleons in the ⁴⁸Ca crust.

We will measure mean-field and correlated nucleons using the (e,e'p) reaction in ²H, ¹²C, ⁴⁰Ca, ⁴⁸Ca and ⁵⁴Fe.

4 days in Hall-C using standard SHMS and HMS setup.

Nucleon **pairs** that are close together in the nucleus (wave functions overlap)

=> Momentum space: **pairs** with *high relative momentum* and *low c.m. momentum* compared to the Fermi momentum (k_F)

What we've learned so far:

- 1. 20 25 % of nucleons in nuclei (A>12) have highmomentum (k > k_F ~ 250 MeV/c).
- High-momentum nucleons predominantly belong to 2N-SRC pairs.
- 3. 2N-SRC are dominated by np pairs (tensor interaction).

SRC lead to a 'universal' structure of nuclei in momentum space

6 GeV experimental SRC results:

2 Science, 6 PRLs, RMP (forthcoming), and more...

+ LOTS of theoretical / phenomenological work inspired by the experimental results.

"A highlight of the JLAB 6 GeV program was the discovery that neutron-proton pairs dominate short-range correlations, SRC, in nuclei. This is a fundamental piece of information important for achieving a comprehensive model of nuclei. Knowledge of shortrange correlations and consequently the resulting high-momentum components of the nucleon wave functions is also important information for experiments that use nuclei, for example in neutrino scattering, that rely on accurately known nuclear properties." (JLab PAC 41)

Important to Physics! ③

Important to Physics! 😳

Our focus for today – Correlations in neutron rich nuclei

Proton and neutron momentum distribution in imbalanced systems with short-range interactions

O. Hen et al., Science **346**, 614 (2014).

O. Hen et al., Science **346**, 614 (2014).

Чiī

Kinetic Energy Sharing in Asymmetric Nuclei

Pauli Principle:

higher Fermi momentum => Majority (neutrons) fermions move faster.

np correlations:

greater pairing probability
=> Minority (protons)
fermions move faster

Kinetic Energy Sharing in Asymmetric Nuclei

Pauli Principle:

- higher Fermi momentum => Majority (neutrons) fermions move faster.
- np correlations: greater pairing probability => Minority (protons) fermions move faster

Who wins?

Calculations Predict Correlations Win

VMC Calculations: R. Wiringa et al., Phys. Rev. C 89, 024305 (2013)

Focusing on ⁴⁸Ca

M. Vanhalst, et al., J. Phys. G 42, 055104 (2015)

Focusing on ⁴⁸Ca

M. Vanhalst, et al., J. Phys. G 42, 055104 (2015)

Pairing and.... Neutron Stars

np-SRC pairs

- Create high-momentum protons and open 'holes' in the neutron Fermi sphere.
 - Change the URCA process cooling rate?
 - Change the spatial distribution?
- Implementing into cooling calculations now!

A. Steiner, Private com. + Frankfurt, Sargsian and Strikman, Int. J. Mod. Phys. A 23, 2991 (2008). 18

Pairing and.... the Symmetry Energy

Relates to the energy change when replacing n with p.

- neutron stars,
- heavy-ion collisions, > more...
- \triangleright equation-of-state of \rightarrow r-process nucleosynthesis, core-collapse supernovae,

How can JLab help?

- **CREX / PREX** constrain the slope $[L^{\infty}(dE_{sym}/d\rho)]_{00}]$.
- **Pairing** changes the kinetic / potential balance.

CaFe will measure the pairing mechanism

O. Hen et al., PRC 91, 025803 (2015)

Protons move faster in the neutron skin

what's the Problem?

These effects depend quantitatively on the short-range pairing mechanism in asymmetric nuclei.

=> In comes CaFe!

The CaFe Triplet:

A Lab for Asymmetric Nuclei

Чiт

A Lab for Asymmetric Nuclei

Nucleus	Ζ	Ν	
⁴⁰ Ca	20	20	Symmetric double magic
⁴⁸ Ca	20	28	+ Full neutron shell (1f _{7/2})
⁵⁴ Fe	26	28	Almost symmetric double magic

$$1p = ---- 1p_{1/2} 2 8 \\ ---- 1p_{3/2} 4$$

How do the neutrons from the outer 1f_{7/2} shell correlate with the ⁴⁰Ca core?

 $1s - - - 1s_{1/2} \ 2 \ 2$

(e,e') cross-section ratios at $x_B > 1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

=> ⁴⁸Ca: + 20% nucleons, +20% SRC pairs!

Z. Ye Ph.D. Thesis, UVA. arXiv: 1408.5861

Z. Ye, JLab Users Group Meeting Talk (2016) 25

(e,e') cross-section ratios at $x_B > 1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer 1f_{7/2} shell (i.e. in the skin) are equally correlated as the nucleons in the ⁴⁰Ca core! 26

(e,e') cross-section ratios at $x_B > 1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer 1f_{7/2} shell (i.e. in the skin) are equally correlated as the nucleons in the ⁴⁰Ca core! 2

Can (e,e') also tell us what type of pairs the 1f_{7/2} neutrons create? Unfortunately No...

Examine two extreme hypothesis:

<u>All pairs can form SRC pairs:</u> $\sigma_{(e,e')|x>1} \propto (\sigma_p + \sigma_n)(NZ) + 2\sigma_p(Z \cdot (Z-1)/2) + 2\sigma_n(N \cdot (N-1)/2)$

<u>Only np pairs can form SRC pairs:</u> $\sigma_{(e,e')|x>1} \propto (\sigma_p + \sigma_n)(NZ)$

All-Pairs / np-Pairs = 0.94

VERY hard to discriminate

Can (e,e') also tell us what type of pairs the 1f_{7/2} neutrons create? Unfortunately No...

Examine two extreme hypothesis:

<u>All pairs can form SRC pairs:</u> $\sigma_{(e,e')|x>1} \propto (\sigma_p + \sigma_n)(NZ) + 2\sigma_p(Z \cdot (Z-1)/2) + 2\sigma_n(N \cdot (N-1)/2)$

<u>Only np pairs can form SRC pairs:</u> $\sigma_{(e,e')|x>1} \propto (\sigma_p + \sigma_n)(NZ)$

All-Pairs / np-Pairs = 0.94

VERY hard to discriminate

The (e,e') reaction can not distinguish protons and neutrons \rightarrow need (e,e'p) !

Can (e,e'p) tell us what type of pairs the 1f_{7/2} neutrons create? Yes!

Model	$^{40}Ca/C$	$^{48}\mathrm{Ca}/^{40}\mathrm{Ca}$	$^{54}\mathrm{Fe}/^{48}\mathrm{Ca}$	$^{54}\mathrm{Fe}/^{40}\mathrm{Ca}$
$1 - \mathrm{all} \ \mathrm{protons}$	1.7	1	1.3	1.3
$2-\mathrm{all}\ \mathrm{pairs}$	11.7	1.23	1.44	1.77
$3 - \mathrm{all} \; np \; \mathrm{pairs}$	10.1	1.4	1.30	1.82
4-S and P np pairs	10.4	1.31	1.32	1.73
$5-l=0, n=0 np { m pairs}$	5.3	1.20	1.22	1.47

Ratios of correlated protons in different nuclei

The sensitivity of the (e,e'p) reaction gives large effects!

C. Colle and O. Hen et al., Phys. Rev. C 92, 024604 (2015)

Can (e,e'p) tell us what type of pairs the 1f_{7/2} neutrons create? Yes!

Ratios of correlated protons in different nuclei

The sensitivity of the (e,e'p) reaction gives large effects!

C. Colle and O. Hen et al., Phys. Rev. C 92, 024604 (2015)

- E_{beam} = **11 GeV** @ 40 uA to maximize rates.
- ¹H, ²H, ¹²C, ⁴⁰Ca, ⁴⁸Ca, and ⁵⁴Fe targets.
- Q² ≈ 3.5 GeV²
 - Reduces non-nucleonic currents (MEC, IC).
 - Proton energies high enough for Glauber FSI calculations.
- $x_B = Q^2/2m\omega > 1.2$ to minimize non-nucleonic currents.
- θ_{Pm,q} < 50° to minimize FSI.
- Two Kinematics:
 - 350 < p_{miss} < 600 MeV/c ("SRC")

p_{miss} < 250 MeV/c ("Mean-Field")

Kinematics and Acceptance

Q^2	E_{Beam}	E'_e	$ heta_e$	$ \mathbf{p}_p $	$ heta_p$	p_{miss}
${ m GeV^2}$	${\rm GeV}$	GeV		$\mathrm{GeV/c}$		$\mathrm{GeV/c}$
3.5	11	9.85	10.0°	1.80	43.0°	0.45
3.5	11	9.85	10.0°	1.90	42.5°	0.15

(e,e'p) Cross-section Ratios for:

 $\frac{A_1(e,e'p)|_{SRC}}{A_1(e,e'p)|_{Mean-Field}} / \frac{A_2(e,e'p)|_{SRC}}{A_2(e,e'p)|_{Mean-Field}}$

- Proportional to the relative number of correlated protons with minimal (experimental and theoretical) uncertainties.
- Tells us how many np-SRC pairs the extra f_{7/2} neutrons create!
- Reduced transparency corrections: Hen et al., Phys. Lett. B 722, 63 (2013)
 - A^{1/3} dependence, T(⁴⁸Ca/⁴⁰Ca) ~ 6% correction.
 - Mean-field / SRC ratio further reduce the correction.
 - Well understood benchmark for symmetric nuclei (²H, ¹²C, ⁴⁰Ca, ⁵⁴Fe).

Measurement Plan and Beam-Time Request

<u>4 days @ 11 GeV</u>

kinematics	Target	Data-Taking	Current	Expected Number
		[Hours]	[uA]	of Events
	² H	12	40	4000
	$^{12}\mathrm{C}$	10	40	4000
high p_{miss}	40 Ca	14	40	4000
	48 Ca	14	40	4000
	$^{54}\mathrm{Fe}$	14	40	4000
low p_{miss}	All Targets	16	40	10,000/Target
Commissioning and calibrations		12	20–60	
Target and Spectrometer Changes		4	N/A	
Total		96 (4 days)		

Why?

How?

Summary

What? CaFe is a focused measurement of <u>short-range pairing</u> in neutron rich nuclei.

What is the dynamics of the neutron skin in ⁴⁸Ca? Do correlations impact:

- Movement of nucleons in the skin?
- Extraction of static properties like the skin size?

Implications include neutron stars, the EMC effect and more...

We will measure mean-field and correlated nucleons using the (e,e'p) reaction in ²H, ¹²C, ⁴⁰Ca, ⁴⁸Ca and ⁵⁴Fe

We request 4 days at Hall-C using SHMS and HMS in standard configuration.

Additional Observables (Benchmarks)

Using (e,e'p) ratios of symmetric nuclei to validate extraction procedure:

 $A_1(e, e'p)|_{Mean-Field}$ $A_2(e, e'p)|_{Mean-Field}$

- 'Traditional' Transparency measurement.
- Well understood for symmetric nuclei ratios.
- Benchmark for Glauber calculations over a wide range of nuclei (from ²H to 12 C to 40 Ca and 54 Fe).

$$\frac{A_1(e, e'p)|_{SRC}}{A_2(e, e'p)|_{SRC}}$$

- 'SRC' Transparency measurement.
- Benchmark against (e,e') for symmetric nuclei ratios.
- Allows to extract physics in ⁴⁸Ca / ⁴⁰Ca ratio where FSI corrections are small ($\sim 6\%$).

41

Tensor Correlations:

- Break the Fermi-Gas picture
- Reduce the kinetic symmetry energy (at ρ_0)
- Enhance the potential symmetry energy (at ρ_0)
- Softens the potential symmetry density dependence

But.... Still consistent with constrains from neutron stars observations!

SRC and the Symmetry Energy

O. Hen and A. Steiner et al. (on arXiv soon) III O. Hen et al., PRC 91, 025803 (2015)

Skin Width and Symmetry Energy

