C12-15-004: DVCS, DIS, and SIDIS with a longitudinally polarized deuterium target

PAC44, JLab, 7/26/2016

C12-15-004: DVCS, DIS, and SIDIS with a longitudinally polarized deuterium target

PAC44, JLab, 7/26/2016

Outline:

- Multi-dimensional mapping of the nucleon
- Flavor separation of parton distributions
- Polarized target experiments with CLAS12
- Run group M: beam time request
- Experimental setup
- Physics cases:
 - ✓ Polarized nDVCS
 - ✓ SIDIS
 - ✓ DIS
 - ✓ Additional physics topics
- Conclusions/summary

Flavor decomposition of parton distributions

• Proton and neutron have different flavor compositions \rightarrow observables on these two target types are linked to different mixtures of quark structure functions

Virtual-photon asymmetry from DIS

$$A_{p}^{\pi^{+}-\pi^{-}}(x) = \frac{4\Delta u_{V}(x) - \Delta d_{V}(x)}{4u_{V}(x) - d_{V}(x)} \qquad A_{d}^{\pi^{+}-\pi^{-}}(x) = \frac{\Delta u_{V}(x) + \Delta d_{V}(x)}{u_{V}(x) - d_{V}(x)}$$

$$\sigma_{KM}^{K^{+}}(p) = 4h_{1L}^{\perp u}H_{1}^{\perp(1/2)u/K^{+}} + h_{1L}^{\perp d}H_{1}^{\perp(1/2)d/K^{+}} + h_{1}^{\perp \bar{s}}H_{1}^{\perp(1/2)\bar{s}/K^{+}}$$

$$\sigma_{KM}^{K^{+}}(n) = 4h_{1L}^{\perp d}H_{1}^{\perp(1/2)u/K^{+}} + h_{1L}^{\perp u}H_{1}^{\perp(1/2)d/K^{+}} + h_{1}^{\perp \bar{s}}H_{1}^{\perp(1/2)\bar{s}/K^{+}}$$

SIDIS $A_{UL}^{sin2\phi}$ for K⁺

$$\mathcal{H}_{p}(\xi,t) = \frac{4}{9}\mathcal{H}_{u}(\xi,t) + \frac{1}{9}\mathcal{H}_{d}(\xi,t) \quad \mathcal{H}_{n}(\xi,t) = \frac{1}{9}\mathcal{H}_{u}(\xi,t) + \frac{4}{9}\mathcal{H}_{d}(\xi,t)$$

Compton form factors from DVCS

- Experiments on **proton and deuterium targets** must be performed to extract the flavor dependence of the various kinds of parton distributions
- Longitudinally polarized observables: nuclear targets, such as NH₃ and ND₃ are used

ND₃ experiments with CLAS12: history

• E12-06-109 (Polarized DIS): 30 days on NH₃ (+overhead), 50 days on ND₃ (+overhead) (run group C)

- E12-06-119b (DVCS on longitudinally polarized protons): 120 days on NH₃ (run group C)
- E12-07-107 (SIDIS with long. pol. target), E12-09-007b, E12-09-009 (K-SIDIS with long. pol. target)

 \rightarrow beam time for ND₃ ~40% of that for NH₃

ND₃ typically has $\frac{1}{2}$ the polarization of **NH**₃ (~40% vs. 80%)

PR12-15-004 (« Deeply virtual Compton scattering on a longitudinally polarized deuterium target »), requesting 100 days + overhead on ND₃ was conditionally approved (C2) by PAC 43

"...To obtain full approval, the collaboration needs to fulfill two conditions. One would be the submission of a Run Group proposal, connected to RG-C, that has been fully vetted according to standard procedures in the CLAS12 collaboration. The second would be the submission of a new proposal, defining a new run group, for the extended running time, optimized for this measurement (for example with increased neutron detection efficiency), and possibly incorporating other experiments. The PAC encourages the collaboration to consider the opportunities, and looks forward to understanding the full physics potential of a new run group."

✓ PR12-06-109a, polarized nDVCS using the existing 50 days of Run group Cb; submitted to PAC44, after CLAS review and approval
 ✓ C12-15-004: New Run Group M: three experiments, inclusion of FT to optimize nDVCS

Proposed CLAS12 Run group (M)

Production data taking at 10 ³⁵ cm ⁻² s ⁻¹ on ND ₃ (10 nA)	50 days	
Production data taking at 0.5·10 ³⁵ cm ⁻² s ⁻¹ on ND ₃ (5 nA)	10 days – with Forward Tagger	
Target work	4 days	
Production data taking on C ₁₂ target	5 days	
Moeller polarimeter runs	1 day	
Configuration change	3 days	
Total beam time request	73 days	

Beam energy: 11 GeV - Beam polarization: 85%

Assuming a total of 60 days (50 on $ND_3 + 10$ of overhead) for RG Cb \rightarrow 133 days of beam time for polarized deuterium (110 on $ND_3 + 23$ of overhead)

Physics topics:

- Polarized nDVCS (GPDs)
- Polarized SIDIS (TMDs)
- Polarized DIS (polarized PDFs)

•Additional topics: polarized nTCS, polarized nDVMP, di-hadron SIDIS

Experimental setup of Run group M

Added to optimize nDVCS measurement

The CLAS12 longitudinally polarized target

Central Neutron Detector (CND)

Main physics goal: detect the recoiling neutron in nDVCS Requirements/performances:

- good neutron/photon separation for 0.2<p_n<1 GeV/c \rightarrow ~150 ps time resolution
- momentum resolution $\delta p/p < 10\%$
- neutron detection efficiency ~10%

Project status:

- Construction completed
- Detector shipped to JLab in June 2015
- Cosmic data analysis: $\sigma_t \sim 150$ ps for all blocks,

confirmed with tests at JLab

- **Readiness Review** passed in June
- →CND included in CLAS12 baseline equipment

CND design: scintillator barrel - 3 radial layers, 48 bars per layer **coupled two-bytwo** downstream by a **"u-turn" lightguide**, 144 long light guides with **PMTs** upstream

Forward tagger

- FT (calorimeter + hodoscope + tracker): polar angles between 2.5° and 4.5°
- \rightarrow Important for **DVCS**, low-angle **photons**, covering holes at $\phi \sim 0^{\circ}$ -360°
- GEMC simulations on ND₃ target, rastered beam, including background
- With the current design of the shielding, high occupancy (5%) in DC-R1 at 10 nA
- \rightarrow FT on for only a subset of the experiment (10 days), with lower current (5 nA)

Configuration change (from Bob Miller and Chris Keith): 3 PAC days

- 1 (calendar) day to move the SVT/solenoid/HTCC upstream
- 1 day to remove the Moller shielding
- 1 day to install the lead shield, Moller shield, outer shielding cone, and nose cone
- 1 day to move back the SVT/solenoid/HTCC into position
- 2 days to reinstall the polarized target and recover the polarization

CLAS12 RICH

Design goals:

- $\pi/K/p$ identification from 3 up to 8 GeV/c and 25°
- $\sim 4\sigma$ pion-kaon separation
- pion rejection factor ~ 1:500
- will cover 1 sector (2 afterwards) of CLAS12, replacing LTCC

erson National Accelerator Facility

Project overview:

2010: Concept of Design and Technology
2011: Tests of components and small prototype
2012: Tests of large scale prototype
2013: June: RICH Technical Review
September: Project Review with DOE
→ Start Construction Phase
2014: RICH Mechanical Review
2015: June: RICH Internal Review
October: Project Mid-term Review DOE
2016: RICH Readiness Review
2017: September: Ready for Installation (1 sector)

HANNES GUTENBERG UNIVERSITÄT MAIN 12

Deeply-virtual Compton scattering on the neutron with a longitudinally polarized deuteron target

A. Biselli (Fairfield U), C. Keith (JLab), S. Niccolai (IPN Orsay) (contact person), S. Pisano (INFN Frascati), D. Sokhan (Glasgow U)

Deeply Virtual Compton Scattering and GPDs

At LO QCD, twist 2, chiral-even, quark sector \rightarrow 4 GPDs for each quark flavor

conserve nucleon spin

flip nucleon spin

Vector: $\mathbf{H}(\mathbf{x},\xi,t)$ Axial-Vector: $\mathbf{H}(\mathbf{x},\xi,t)$ Tensor: $\mathbf{E}(\mathbf{x},\xi,t)$ Pseudoscalar: $\mathbf{\tilde{E}}(\mathbf{x},\xi,t)$

Nucleon tomography

$$q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} H(x, 0, -\Delta_{\perp}^{2})$$
$$\Delta q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

M. Burkardt, PRD 62, 71503 (2000)

Quark angular momentum (Ji's sum rule)

$$\frac{1}{2}\int_{-1}^{1} x dx (H_q(x,\xi,t=0) + E_q(x,\xi,t=0)) = J_q = \frac{1}{2}\Delta\Sigma + \Delta L$$

X. Ji, Phy.Rev.Lett.78,610(1997)

DVCS observables and flavor separation of CFFs

Proton and neutron GPDs (and CFFs) are linear combinations of quark GPDs

A **combined analysis** of DVCS observables for **proton and neutron** targets is necessary to perform the **flavor separation** of the CFFs

What we learned from CLAS pDVCS asymmetries

Extraction of CFFs from combined analysis of CLAS data (TSA, BSA, DSA – eg1dvcs) CFFs fitting code by M. Guidal M. Guidal, Eur. Phys. J. A 37 (2008) 319, etc...

PROTON TOMOGRAPHY:

• *ImH* has steeper t-slope than *ImH*: axial charge more "concentrated" than the electric charge

• $Im \mathcal{H}$, flatter t-slope at high x_B : faster quarks (valence) at the core of the nucleon, slower quarks (sea) at its perifery

$$\Delta q(x, \mathbf{b}_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}\mathbf{b}_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

$$\int H(x, \xi, t) dx = F_{1}(t) \qquad xp \qquad b_{\perp}$$

$$\int \widetilde{H}(x, \xi, t) dx = G_{A}(t) \qquad \mathbf{z} \qquad \mathbf{z$$

DVCS	Observable	Target	Sensitivity	Completed	12-GeV
	(target)		to CFFs	experiments	experiments
program	$\Delta \sigma_{beam}(\mathbf{p})$	Unpolarized hydrogen	$\Im m \mathcal{H}_p$	Hall A, CLAS	Hall A, CLAS12, Hall C
for	BSA(p)	Unpolarized hydrogen	$\Im m \mathcal{H}_p$	HERMES, CLAS	CLAS12
	TSA(p)	Long. pol. NH3	$\Im m \widetilde{\mathcal{H}}_p, \Im m \mathcal{H}_p,$	HERMES, CLAS	CLAS12
JLab12	DSA(p)	Long. pol. NH3	$\Re e \mathcal{H}_p, \Re e \mathcal{H}_p$	HERMES, CLAS	CLAS12
	tTSA(p)	Transv. pol. protons	$\Im \mathcal{H}_p, \Im \mathcal{H}_p$	HERMES	CLAS12
	$\Delta \sigma_{beam}(\mathbf{n})$	Unpolarized deuterium	$\Im m \mathcal{E}_n$	Hall A	
Proton	BSA(n)	Unpolarized deuterium	$\Im m \mathcal{E}_n$		CLAS12
Neutron	TSA(n)	Long. pol. ND3	$\Im m \mathcal{H}_n$		C12 15 004
	DSA(n)	Long. pol. ND3	$\Re e \mathcal{H}_n$		C12-13-004

Projected results: target-spin asymmetry

✓ Count rates
 computed with
 nDVCS+BH
 event generator
 + CLAS12 + FT
 acceptance from
 FastMC
 + CND efficiency
 from GEANT4
 simulation
 ✓ Asymmetries
 computed with
 VGG model

• 4 bins in Q^2

• 4 bins in –t

• 4 bins in x_B

• 12 bins in φ (Same as E12-11-003)

Red points = **50 days** Bins completed by the FT

X_B 20

Projected results: double spin asymmetry

- 4 bins in Q^2
- 4 bins in –t
- 4 bins in x_B
- 12 bins in φ (Same as E12-11-003)

Red points = 50 days Green curves: BH

Bins completed by the FT

Projected beam spin asymmetry from C12-11-003

26

Projections for flavor separation (*ImH*)

Projections for flavor separation (*ImE*)

Final-state interactions for nDVCS on the deuteron

FSI effects without charge exchange $(pn \rightarrow pn)$ will be estimated empirically measuring env and epv on deuteron in this same experiment and comparing with proton data

The effect of charge-exchange FSI can be calculated and corrected for.

M. Sargsian estimated this effect for the extraction of the neutron form factor in polarized electron scattering from polarized He³ (S.Riordan *et al.*, PRL 105, 262302 (2010), W. Cosyn *et al.*, PRC89, 014612 (2014)):

• pn \rightarrow np interaction is due to pion exchange \rightarrow amplitude has a 1/s suppression factor, due to the spin 0 of the exchanged pion, as compared to non-charge exchange pn \rightarrow pn scattering (W. R. Gibbs and B. Loiseau, PRC 50, 2742 (1994))

• 10% at the **cross-section level**

• **negligible impact on asymmetry**, because the effect is almost identical for deuteron spin 1 and spin -1 states dominated by the S wave of the deuteron

• pn \rightarrow np has a **larger slope factor** in the amplitude \rightarrow for our kinematics it decreases two times faster with t than pn \rightarrow np

A measurement of **fully exclusive nDVCS**, using **BoNus** for the spectator proton and the **CND** for the active neutron could also be done, even if it will have limited statistics: experimental check of FSI calculations, possibility to select kinematics minimizing FSI effects

Semi-Inclusive Deep Inelastic Scattering (SIDIS) on deuterium: The case for doubling the statistics

Silvia Pisano, INFN Frascati, contact person

Transverse Momentum Dependent PDFs&FFs in SIDIS

8 leading-twist TMDs

• They depend on the parton longitudinal momentum fraction x and on its transverse momentum k_T

- \rightarrow 3D dynamics of the nucleon
- Diagonal elements: **PDFs**
- Off-diagonal elements require OAM

Leading Twist TMDs Quark Spin					
		Quark Polarization			
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
Nucleon Polarization ⊣	U	$f_1 = \bullet$		$h_1^{\perp} = \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right)$ Boer-Mulders	
	L		$g_{1L} = \bigoplus_{\text{Helicity}} - \bigoplus_{\text{Helicity}} $	$h_{1L}^{\perp} = \bigwedge_{\text{Kotzinian-Mulders}} \longrightarrow$	
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\dagger} - \underbrace{\bullet}_{\bullet}$	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ \bullet \end{array} - \begin{array}{c} \uparrow \\ \bullet \end{array}$	$h_{1} = \underbrace{1}_{\text{Transversity}}^{\uparrow} - \underbrace{1}_{\text{Transversity}}^{\uparrow}$ $h_{1} = \underbrace{1}_{\text{Transversity}}^{\uparrow} - \underbrace{1}_{\text{Transversity}}^{\uparrow}$	

Approved **CLAS12 SIDIS experiments**, with 50 days on longitudinally polarized ND₃: E12-07-107 (**pion SIDIS**), E12-09-009 (**kaon SIDIS**)

Fragmentation Functions

Hadronization of the active quark \rightarrow transition from partonic to hadronic degrees of freedom

q/H	U	L	т
U	D ₁		H_1^{\perp}
L		G _{1L}	H_{1L}^{\perp}
Т	H_{1}^{\perp}	G_{1T}	$\pmb{H_1}$, \mathbf{H}_{1T}^{\perp}

Single-hadron SIDIS cross-section

Depending on the polarizations of beam and target, different TMD and FF can be accessed:

SIDIS on polarized ND₃: single target spin asymmetry

$$\begin{array}{c} \frac{d\sigma}{dxdyd\phi_{S}d\phi_{h}dP_{h\perp}^{2}} \propto S_{L} \left[\sqrt{2\epsilon(1+\epsilon)}sin\phi_{h}F_{UL}^{sin\phi_{h}} + \epsilon sin(2\phi_{h})F_{UL}^{sin(2\phi_{h})} \right] \\ + S_{L}\lambda_{e} \left[\sqrt{1-\epsilon^{2}}F_{LL} + \sqrt{2\epsilon(1-\epsilon)}cos(\phi_{h})F_{LL}^{cos(\phi_{h})} \right] \\ \mathbf{g}_{\mathbf{1L}} \otimes \mathbf{D}_{\mathbf{1}} \end{array}$$

 $A_{UL}:sin2\varphi$ is the only twist-2 term

- Kotzinian-Mulders function (worm gear)
- \rightarrow transversely polarized quark in a longitudinally polarized proton
- \rightarrow quark spin-orbit correlations
- provides independent information on Collins function $\mathbf{H_1}^{\perp}$

Doubling the statistics helps at high x_B, where models differ the most, and it is crucial for the K[°] channel, which has lower statistics

SIDIS on polarized ND₃: double spin asymmetry

SIDIS on polarized ND₃: double spin asymmetry

Higher-twist TMDs N/q Т U L f[⊥] g^{\perp} U h.e g_L^{\perp} f_L^{\perp} L h_L,e_L $h_{T},e_{T},h_{T}^{\perp},e_{T}^{\perp}$ f_{T}, f_{T}^{\perp} g_{T}, g_{T}^{\perp} Т

 $\cos\phi$ term of A_{LL} is linked to higher-twist TMDs

Models: Anselmino et al., PRD74 (2006) Different k_T widths for helicity distributions Also for pions, doubling the statistics helps at high p_T, where models differ the most

Deep Inclusive Scattering (DIS) on Deuterium: The case for doubling the statistics

Sebastian Kuhn, ODU, contact person

Present Status: What do we know about polarized PDFs?

CLAS12 Approved (RG C: 30 days p, 50 days d)

Relative uncertainties on polarized PDFs with various data sets (Courtesy N. Sato)

Relative uncertainties on polarized PDFs with various data sets (Courtesy N. Sato)

 $\Delta d/d$ for $x \rightarrow 1$

Curves: pQCD without and with OAM effects (Brodsky et al. Nucl. Phys. B441 (1995) – Avakian et al. PRL99 (2007)) Projections: hyperfine perturbed model (N. Isgur et al., PRD59 (1999)

As approved

With "unlucky" statistical fluctuations, cannot exclude $\Delta d/d > 0$ at highest $x (\chi^2/dof=2.5, p=8\%)$

With doubled beam time

Even with "unlucky" statistical fluctuations, can exclude $\Delta d/d > 0$ at highest *x* ($\chi^2/dof=6.6, p=0.4\%$)

Only **K**⁻ production on **D** is uniquely sensitive to Δs (Δu and Δd largely cancel)

Additional topics

• First time measurement of **Timelike Compton scattering**, $\gamma n \rightarrow ne^+e^-$, on longitudinally polarized neutron:

- ✓ universality of GPDs
- ✓ A_{UL} and A_{LL} have sensitivity to H_n and E_n
- $\checkmark A_{UL}$ expected to be fairly big (0.15)
- \checkmark nTCS cross section only a factor of 2 less than the pTCS one
- \checkmark 120 days approved for pTCS with unpolarized target

- First-time measurement of **di-hadron SIDIS** on longitudinally polarized deuterium:
 - ✓ cleanest access to chiral-odd PDFs
 - \checkmark promising preliminary results for A_{UL} on NH_3 with CLAS at 6 GeV
 - \checkmark ND₃ needed for flavor dependence of the various PDFs and FFs, high stat for mapping
- **DVMP** on longitudinally polarized neutrons:
 - ✓ transversity neutron-GPDs in pseudoscalar channels (π^0 , η , π^-)
 - ✓ link to transversity GPDs shown by 6-GeV CLAS results on π^0 , η
 - ✓ A_{UL} proportional to LT interference term of the cross section→ H_T , E_T , $\overline{E_T}$

Conclusions/summary: CLAS12 Run group M

• The multi-dimensional structure of the nucleon is one of the primary goals of the 12-GeV upgrade of JLab, and it is the core of the CLAS12 program

- Parton distributions depend on quark flavors, measurements on proton and deuterium are necessary
- Current approved beam time on ND_3 for CLAS12 is ~40% of the NH_3 one
- We request 73 PAC days of new beam time (11 GeV, 85% polarization):
 ➢ 60 of production running on ND₃, 13 of ancillary measurements/configuration change
- Setup: CLAS12 + ND₃ polarized target, CND, RICH, FT (for 10 days at 5 nA)
- \bullet The inclusion of the FT completes the ϕ coverage for nDVCS, improvement for CFF fits beyond statistical effects
- This will bring the total running time on ND₃ for CLAS12 to133 days same as NH₃
- First time measurement of polarized nDVCS
- Increased statistics for SIDIS, important especially for kaon channels at high x, p_T
- High precision measurement of collinear structure functions
- Exploratory measurements of DVMP, nTCS, di-hadron SIDIS

Back-up slides

CND: requirements

More than 80% of the neutrons have $\theta > 40^{\circ}$ \rightarrow Neutron detector in the CD

Resolution on MM(enγ) studied with nDVCS
 event generator + electron and photon resolutions
 obtained from CLAS12 FastMC
 + design specs for Forward Calorimeter
 → dominated by photon resolutions

in this same experiment and compare with free-proton data

 \rightarrow The CND must ensure:

- good neutron identification for $0.2 < p_n \le 1 \text{ GeV/c}$ $\rightarrow \sigma(\text{TOF}) \sim 150 \text{ ps}$ for $n/\gamma \beta$ -separation
- momentum resolution up to 10%
- no stringent requirements for angular resolutions

nDVCS@CLAS12: kinematics and acceptances $ed \rightarrow e'n\gamma(p)$

80% of neutrons in CND (θ>40°)

 $E_e = 11 \text{ GeV}, Q^2 > 1 \text{ GeV}^2, W > 2 \text{ GeV}^2, t < -1.2 \text{ GeV}^2$

nDVCS-BH photons have E>2 GeV

CND: expected performances (Monte Carlo)

GEANT4 simulations used to evaluate:

- ➤ efficiency
- > PID (neutron/photon separation)
- > momentum and angular resolutions
- > definition of reconstruction algorithms
- background studies

Measured σ_t and light loss due to u-turn implemented in the simulation

Efficiency ~ 8-9% for a threshold of 3 MeV, TOF<8 ns and $p_n = 0.2 - 1$ GeV/c

Definitions of nDVCS observables F

For each 4-D. bin in $(Q^2, x_B, -t, \phi)$

Definitions of nDVCS observables

For each 4-D. bin in $(Q^2, x_B, -t, \phi)$

$$A_{UL} = \frac{N^{++} + N^{-+} - N^{+-} - N^{--}}{D_f \left(P_t^{-} \left(N^{++} + N^{-+} \right) + P_t^{+} \left(N^{+-} + N^{--} \right) \right)}$$

$$Im\{\mathcal{H}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}\}$$

 $Re\{\mathcal{H}_{n}, \mathcal{E}_{n}\}$

h. haam. t. targat

$$A_{LL} = \frac{N^{++} + N^{--} - N^{+-} - N^{-+}}{D_f P_b \left(P_t^{-} \left(N^{++} + N^{-+} \right) + P_t^{+} \left(N^{+-} + N^{--} \right) \right)}$$
Double spin
asymmetry

$$N^{bt} = (1 - B^{bt}_{\pi^0}) \cdot \frac{N^{bt}_{en\gamma}}{FC^{bt}}$$

Charge-normalized DVCS/BH yield

FC^{bt}: charge, (Faraday Cup)

$$B_{\pi^0}$$
: π^0 contamination
 P_t : target pol.; P_b : beam pol.

D_f: dilution factor

Deeply Virtual Compton Scattering and GPDs

• $Q^2 = -(e - e')^2$ • $x_B = Q^2/2M_V$ $v = E_e - E_e$, • $x + \xi$, $x - \xi$ longitudinal momentum fractions • $t = \Delta^2 = (p - p')^2$ • $x \cong x_B/(2 - x_B)$

> « Handbag » factorization valid in the Bjorken regime: high Q², ν (fixed x_B), t<<Q²

At LO QCD, twist 2, chiral-even, quark sector \rightarrow 4 GPDs for each quark flavor

conserve nucleon spin Vector: $\mathbf{H}(\mathbf{x},\xi,\mathbf{t})$ Axial-Vector: $\mathbf{\tilde{H}}(\mathbf{x},\xi,\mathbf{t})$ flip nucleon spin Tensor: $\mathbf{E}(\mathbf{x},\xi,\mathbf{t})$ Pseudoscalar: $\mathbf{\tilde{E}}(\mathbf{x},\xi,\mathbf{t})$ Nucleon tomography $q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} H(x,0,-\Delta_{\perp}^{2})$ $\Delta q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} \widetilde{H}(x,0,-\Delta_{\perp}^{2})$

M. Burkardt, PRD 62, 71503 (2000)

x < 0.1 $x \sim 0.3$ $x \sim 0.8$

Deeply Virtual Compton Scattering and GPDs

• $Q^2 = -(e - e^2)^2$ • $x_B = Q^2/2M\nu \quad \nu = E_e - E_e$, • $x + \xi$, $x - \xi$ longitudinal momentum fractions • $t = \Delta^2 = (p - p^2)^2$ • $x \cong x_B/(2 - x_B)$

> « Handbag » factorization valid in the Bjorken regime: high Q², ν (fixed x_B), t<<Q²

At LO QCD, twist 2, chiral-even, quark sector \rightarrow 4 GPDs for each quark flavor

conserve nucleon spin flip nucleon spin Vector: $\mathbf{H}(\mathbf{x},\xi,t)$ Axial-Vector: $\mathbf{H}(\mathbf{x},\xi,t)$ Tensor: $\mathbf{E}(\mathbf{x},\xi,t)$ Pseudoscalar: $\mathbf{\tilde{E}}(\mathbf{x},\xi,t)$

Nucleon tomography

$$q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} H(x, 0, -\Delta_{\perp}^{2})$$
$$\Delta q(x, b_{\perp}) = \int_{0}^{\infty} \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{i\Delta_{\perp}b_{\perp}} \widetilde{H}(x, 0, -\Delta_{\perp}^{2})$$

Quark angular momentum (Ji's sum rule)

$$\frac{1}{2}\int_{-1}^{1} x dx (H_q(x,\xi,t=0) + E_q(x,\xi,t=0)) = J_q = \frac{1}{2}\Delta\Sigma + \Delta L$$

X. Ji, Phy.Rev.Lett.78,610(1997)

M. Burkardt, PRD 62, 71503 (2000)

Accessing GPDs through DVCS

DVCS allows access to 4 complex GPDs-related quantities: Compton Form Factors (ξ,t)

$$T^{DVCS} \sim P \int_{1}^{1} \frac{GPDs(x,\xi,t)}{x \pm \xi} dx \pm i\pi GPDs(\pm\xi,\xi,t) + \dots$$

 $Re\mathcal{H}_{q} = e_{q}^{2} P \int_{0}^{+1} \left(H^{q}(x,\xi,t) - H^{q}(-x,\xi,t) \right) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx$

Only ξ and t are accessible experimentally

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} \left[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right]$$

BH is calculable (electromagnetic FFs)

 $\sigma \sim \left| T^{DVCS} + T^{BH} \right|^2 \propto \operatorname{Re}(CFFs) \quad (also \, DSA)$ $\Delta \sigma = \sigma^+ - \sigma^- \propto I (DVCS \cdot BH) \propto \operatorname{Im}(CFFs)$ $A = \frac{\Delta \sigma}{2\sigma} \propto \frac{I (DVCS \cdot BH)}{|BH|^2 + |DVCS|^2 + I}$

Sensitivity to CFFs of DVCS spin observables

$$A_{LU(UL)} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \propto \frac{s_{1,unp(UL)}^{I} \sin \phi}{c_{0,unp}^{BH} + c_{0,unp}^{I} + (c_{1,unp}^{BH} + c_{1,unp}^{I}) \cos \phi}$$

$$A_{LL} = \frac{\sigma^{++} + \sigma^{+-} - \sigma^{+-} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-} + \sigma^{+-}} \propto \frac{c_{0,LP}^{BH} + c_{0,LP}^{I} + (c_{1,LP}^{BH} + c_{1,LP}^{I}) \cos \phi}{c_{0,unp}^{BH} + c_{0,unp}^{I} + (c_{1,unp}^{BH} + c_{1,unp}^{I}) \cos \phi}$$

$$(\xi = x_{B}/(2 - x_{B}) \quad k = -t/4M^{2})$$
Polarized beam, unpolarized target:

$$s^{I}_{1,unp} \sim sin\phi \operatorname{Im}\{F_{1}\mathcal{H} + \xi(F_{1} + F_{2})\mathcal{H} - kF_{2}\mathcal{E}\}$$

$$Im\{\mathcal{H}_{p}, f_{1}, f_{1} \in \mathcal{H}\}$$

Twist 2 approximation (-t<<**Q**²)

eutron

 $Im\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}$ $Im\{\mathcal{H}_{\mathbf{n}}, \mathcal{E}_{n}\}$ Unpolarized beam, **longitudinal** target: $\mathbf{s}^{\mathbf{I}}_{1,\mathbf{UL}} \sim \sin\phi \mathbf{Im} \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \}$ $Re\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}$ $Re\{\mathcal{H}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}\}$ Polarized **beam**, **longitudinal** target: $\mathbf{c}^{\mathbf{I}}_{\mathbf{1},\mathbf{LP}} \sim (\mathbf{A} + \mathbf{B}\cos\phi)\mathbf{Re}\{\mathbf{F}_{1}\mathcal{H} + \boldsymbol{\xi}(\mathbf{F}_{1} + \mathbf{F}_{2})(\mathcal{H} + \mathbf{x}_{\mathbf{B}}/2\boldsymbol{\mathcal{E}})\dots\}$ Unpolarized beam, **transverse** target: $Im\{\mathcal{H}_{p}, \mathcal{E}_{p}\}$ $\Delta \sigma_{\rm UT} \sim \cos\phi \sin(\phi_{\rm s} - \phi) \mathbf{Im} \{ k(F_2 \mathcal{H} - F_1 \mathcal{E}) + \dots \}$

Х_В

Pion distributions in ep \rightarrow e' π X

Kaon distributions in ep→e'KX

The CLAS12 longitudinally polarized target

