Investigation of Nucleation and Growth for Nb₃Sn Diffusion Coatings on Niobium SRF Cavities

Uttar Pudasaini (The College of William & Mary) Grigory Eremeev, Charlie Reece (Jefferson Lab) Michael Kelley (The College of William & Mary and Jefferson Lab)

Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity July 28,2016

Outline

- Motivation
- Nb₃Sn coating process
- Nucleation and growth
- Summary

Motivation

- Superior superconducting properties (H_{sh}, T_c ~ twice of Nb)
- Higher accelerating gradient
- Operate at 4.2 K instead of 2 K
- Recent promising results

Nb₃Sn Coating Process at Jlab

WILLIAM どMARY

(Assumed) Coating Growth Mechanism

- Niobium surface covered with native oxide and some hydroxyl
- SnCl₂ reacts with surface to deposit Sn
- Evaporated Sn arrives and joins existing tin
- Phase formation and grain growth

Nucleation

- Action of SnCl₂: Generates tin-enriched locations early
- Effect on uniformity and coverage?
- Controls the final structure of coating ?
- Experiments :
 - Usual Nb₃Sn coating set up
 - Vary nucleation parameters
 - Process interruption
 - Examination of samples

SEM/EDS Examination

Time Variation @ 500°C

Temperature Variation

Nb

No Chlorine !

1 g SnCl_{2} , 500°C for 1 hr

2mg/cm²

~7µg/cm² . --6 5.00um S4700 15.0kV 12.5mm x10.0k SE(U) S4700 15.0kV 12.5mm x10.0k SE(U) 5.00um What amount of SnCl₂ is good? 5.00um S4700 12.0kV 12.4mm x10.0k SE(M) S4700 12.0kV 12.5mm x10.0k SE(M) 5.00um

3 mg SnCl₂ 500°C for 5 hrs

XPS and SAM Result

- More Sn coverage (Sn:Nb >1) than SEM/EDS observation (Nb:Sn>>1) for each experiment
- Surface covered with Sn particles as well as <u>Sn film</u>
- No Chlorine

SAM Result

Growth of Coating

- Columnar Growth
- Grain orientation independent of substrate
- No effect of Nb substrate grain boundary

Sample U3

Summary and Future Works

- Examined nucleated samples prepared with different variables.
- No Chlorine observed.
- XPS/SAM analysis confirms deposition of Sn during nucleation step in form of particle and film that possibly contributes to the uniformity and coverage of final coating.
- Complete coating experiments with different nucleation profiles are underway to establish relation between nucleation variables and final coatings.
- Material studies of cutouts from Nb₃Sn coated cavity.

Acknowledgement

- Jay Tuggle for EBSD images
- Daniel Hall and Matthias Liepe for Cornell Nucleation profile
- SRF Institute, Jlab

We are grateful for support from the Office of High Energy Physics, U.S. Department of Energy under grant DE-SC-0014475 to the College of William & Mary.

XPS result

