

The surface impedance of Nb/Cu coated QWR cavities for HIE-ISOLDE project

Silvia Teixeira

K. Artoos, A. Miyazaki, G. Rosaz, K.Schirm, A.Sublet, M. Therasse, W. Venturini Delsolaro

Outline

- HIE-ISOLDE Project
- Quarter-Wave Resonator (QWR)
- Cavity Performance
- Rs0 and Rs1
- Features
 - Optical Inspections
 - Material Studies
- New Cavity Design
- Conclusions

HIE-ISOLDE

- The **High Intensity and Energy ISOLDE** (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities.
- Energy increase of the delivered radioactive ion beam (RIB) from 3 MeV/u to 10 MeV/u.

- SC LINAC based on **Quarter Wave Resonators** (QWRs).
- High-β section consists on 4 cryomodules with 5 cavities each.

Quarter Wave Resonator (QWR)

- Superconducting Nb-film cavity at **4.5 K**
- **Conduction cooling** through the copper substrate (good thermal conductivity of Cu)
- **DC bias** sputtering system
- Welding in the high magnetic field region
- Surface resistance *Rs* has *non-trivial* behavior

Frequency	101.28 MHz
$\mathbf{E}_{\mathbf{acc}}$	6 MV/m
β _{optimum}	10.9%
R/Q	553 Ω
${ m E_{peak}/ m E_{acc}}$	5.4
$\mathbf{B}_{\mathrm{peak}}/\mathbf{E}_{\mathrm{acc}}$	96 G/(MV/m)
G=R _s Q	30.34 Ω
U/E _{acc²}	0.207 J/(MV/m) ²
P _c at 6MV/m	10W

Cavity Performance

Presented by Pei in 2014

Initial cooldown & thermal cycle

Cavity Performance

Cavity Performance

Temperature dependent component

Rs0 and Rs1 to evaluate the cavity

Thin Film Workshop '16

Silvia Teixeira

Rs1 vs Rs0 for all cavities

Ideal thermal gradient

• Rs0 and Rs1 are weakly but **positively correlated** (correlation factor 0.3)

Thin Film Workshop '16

Optical Inspections

- In most of the substrates of the series production, cracks were observed mainly near the weld area (in the outer conductor)
- In most cases they are identified when revealed by the SUBU (chemical treatment)

Optical Inspections

Rs1 vs Rs0 for all cavities

- Rs0 and Rs1 are weakly but **positively correlated** (correlation factor 0.3)
- The substrate with the cracks tends to have higher Rs1 (Q-slope)
- Removal of the smoothing weld for material investigations

Material Studies

- Linear indications (appearing as cracks and voids) at surface were observed after SUBU etching on QS9, especially around the EB weld zone.
- Cracks are not only present in the surface, but in **the bulk material** (OFE copper).
- SUBU doesn't generate the imperfections, but **reveals** them.

Courtesy of M. Crouvizier

- Hydrogen embrittlement was discarded as a possible culprit.
- We tried to reproduce the same effect on several kinds of OFE compliant material **without succeeding**.
- **Residual stresses and heat** have probably contributed to the apparition of these imperfections.

Seamless Cavity

Major changes from previous design:

- Cavity machined from a bulk Cu cylinder.
- Antenna length shorter for frequency tuning
- Thinner inner conductor to recover R/Q
- **Cone insertion** to avoid leakage through the beam ports

Frequency	101.28 MHz
$\mathbf{E}_{\mathbf{acc}}$	6 MV/m
β _{optimum}	0.12
R/Q	525 Ω
${ m E_{peak}/ m E_{acc}}$	4.9
B _{peak} / E _{acc}	98 G/(MV/m)
G=R _s Q	30.79 Ω
U/E _{acc²}	0.214 J/(MV/m)2
P _c at 6MV/m	10 W

Conclusions

- A set of measurements of **17 HIE-ISOLDE Nb/Cu QWRs** have been presented.
- Part of the surface resistance has been explained by a **BCS fit** with "reasonable" parameters.
- Rs0 and Rs1 are weakly but **positively correlated**.
- There is a **performance degradation** with time on the production of the cavities. The increase in surface resistance looks correlated to the observed **cracks** at the weld of the Cu substrate.
- The material studies concluded that **residual stresses and heat** might be the origin of the cracks.
- A new design of a **seamless cavity** has been developed in order to avoid the EB welding of the substrate.

