

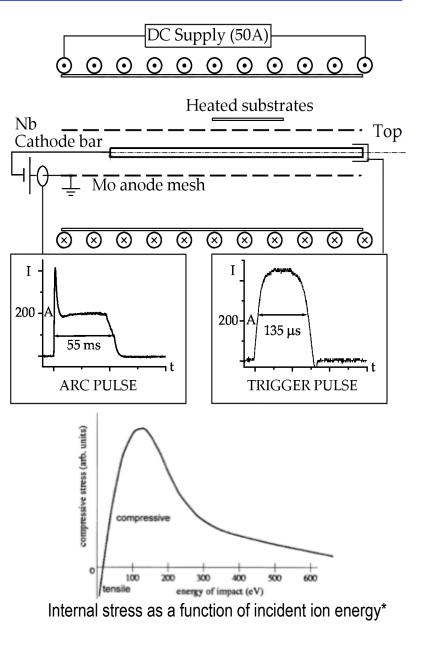
Improvements to the Coaxial Energetic Deposition process for Nb-on-Cu SRF Cavities

Katherine Velas Mahadevan Krishnan, Steve Chapman, Irfan Irfan Alameda Applied Sciences Corporation, San Leandro, CA, USA

presented at 7th International Workshop on Thin Films, Wednesday July 27, 2016

• This research was supported by a DOE SBIR Grant #DE-SC0011371

- AASC is developing Coaxial Energetic Deposition (CED) to coat Cu with Nb for SRF applications
- Research on Nb coated coupons shows CED has promise for SRF cavity coatings
- Achieving $Q_o > 10^{10}$ from coated cavities requires many iterations
- AASC has been coating 1.3 GHz Cu cavities and continues to improve the process
- Thank you to Charlie Reece, Larry Phillips, Ari Palczewski, Anne-Marie Valente-Feliciano and others at JLab for their enthusiastic collaboration



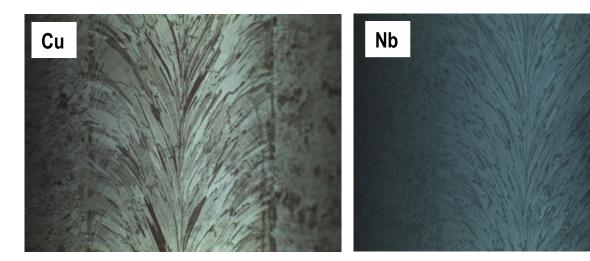
- Coaxial Energetic Deposition
- Baseline cavity coating in CED-2
- CED-U Coating chamber
- Results from first cavity coated in CED-U
- Improvements to CED-U and recent cavity coating

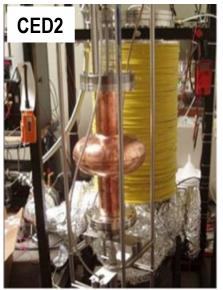
Coaxial Energetic Deposition (CED)

- CED uses 100V/200A power supply to drive cathodic arcs
- CED implants 60-120 eV Nb ions (avg charge +3) monolayers below the surface
- Ions shake up lattice promoting good adhesion and crystallinity
- Heat substrate to promote defect free crystal growth
- Adding -60 V bias gives 240 300 eV ions and reduces compressive stress

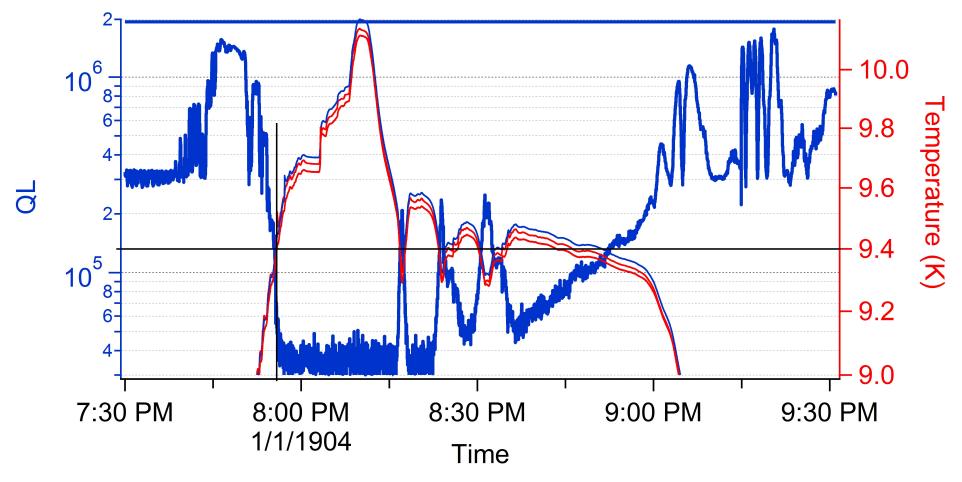
- Ensure thickness uniformity with variable transmission anode
- ◆ 23% in beam pipe, 63% in ellipse
- Number of pulses determines thickness
- ♦ Heat substrate: 150 350 °C
- Bias substrate: -60 0 V

Measure	Value		Unit
Coating pulse width	0.285		S
Arc velocity	4		m/s
coated length	114		cm
Arc current	135		А
Charge per pulse	38.5		С
Erosion rate	25		µg/C
Eroded mass per pulse	9.60E-04		g
Substrate radius	3.9	10	cm
Anode Transparancy	23%	63%	
Fluence at substrate	7.9E-08	8.4E-08	g/cm ²
Nb density	8.57		g/cc
Thickness per pulse	9.2E-09	9.8E-09	cm
# of pulses	25000		
Film Thickness	2.30	2.46	μm
Average Film Thickness	2.38±0.08		μm

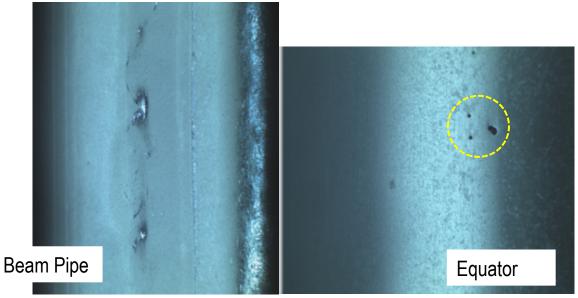



LSFC-B Coating inside CED-2 vacuum chamber

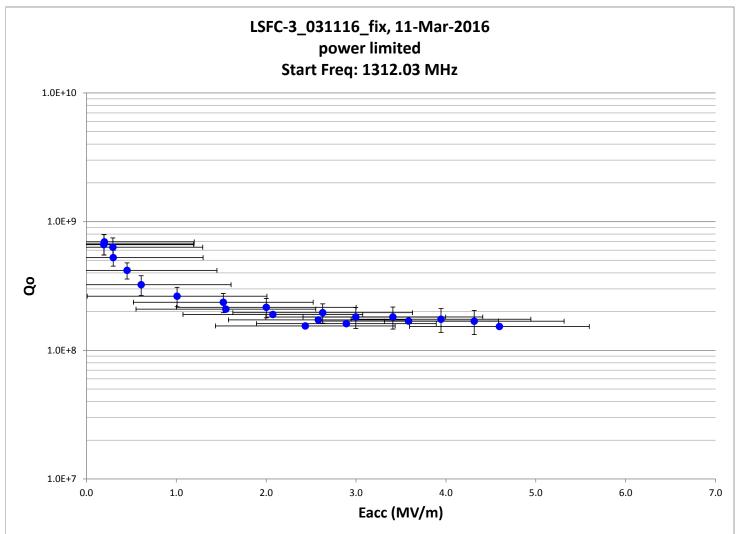
LSFC-B


- Base vacuum pressure 7e-7
- Cavity heated to 275 °C
- No bias voltage
- 2 µm film deposited
- Optical inspection shows Nb inherits crystallinity of Cu substrate

- Clear T_c at 9.4 K
- Q_o limited to 1.5E8
- ◆ Results independent of temperature (2 or 4 K) or cooling speed



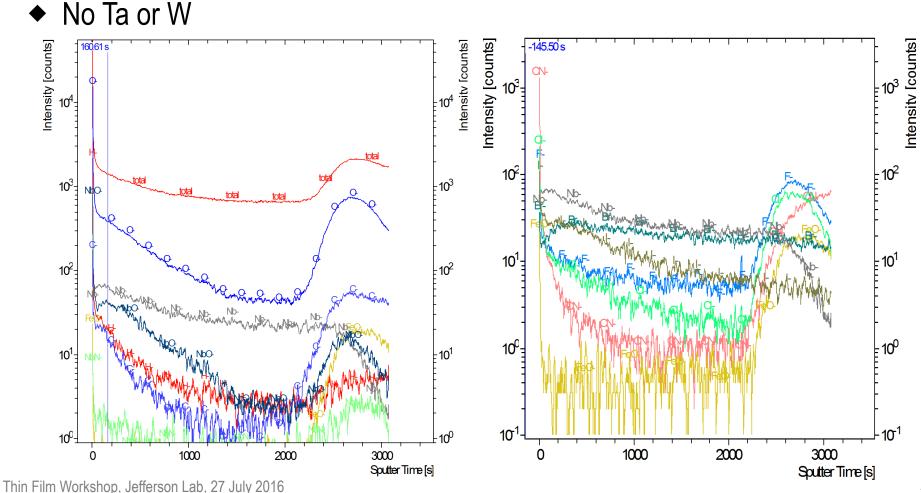
CED-U Chamber Pumps on Cavity



- Removes potential contaminants
- Use sub-chamber to coat coupons
- JLab LSFC-3 cavity coated using -40 V bias at 200 °C
- Base vacuum of 5E-8
- 1.8 um film

CED-U sees improvement in RF performance

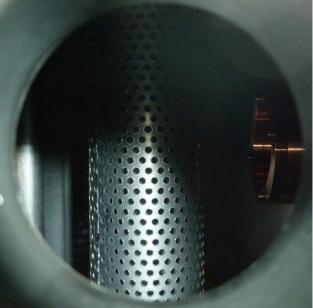
- ◆ Zero field $Q_o \approx 1E9$. Highest in CED cavity.
- Q_o quickly falls to 2E8



Thin Film Workshop, Jefferson Lab, 27 July 2016

SIMS data from Negative Ion Spectrum

- Stainless Steel coupons sent to NCSU for TOF SIMS
- Presence of Halides (F, CI, Br, I) is puzzling
- Impurities decrease from surface through bulk



- ◆ LSFC-3 had HF rinse to remove surface layer and was retested at Q_o ~ 1e7
- Are impurities at interface degrading performance?

- Install gas line to flush cavity with high pressure gas before sealing chamber
- Add feedthroughs to heat coupons from outside

- LSFC-2 coated at 170 °C and -60V with 2 µm and base vacuum of 1E-8 torr
- Flushed chamber with 50 psi of purified N₂ for 10 minutes before final vacuum seal
 - Results soon
 - ◆ PLAN B assemble CED-U in clean room at JLab

Summary

- CED-U is an upgraded CED coating system that directly pumps on a cavity to allow heating from outside and removes potential sources of impurities
- First cavity coated in CED-U had highest Q_o measured using Coaxial Energetic Deposition
- Improvements decreased base vacuum and hopefully removed surface particulates before coating
- Improvements are being made in cavity manufacture
- Next steps may include assembly in JLab clean room
- ◆ AASC's new research grant is to test a seamless Cu cavity