
Summary

A Case Study of Improving UPS Reliability

- Typical UPS Usage
- Backstory
- Initial Status and Analysis
- Reliability Study
- Maximizing Availability, Reliability and Manageability
- Automation, Monitoring and Logging Tools
- Results
- Key Points
- Q & A

Typical UPS Usage in A.C.E.

Protection from Power Loss and Poor Line Quality for:

- Critical Workstations and Servers
- Network Infrastructure
- RF, Vacuum and other critical IOCs

Backstory What just happened?

 Historically our group maintained around 10-15 rack-mounted, enterprise grade UPSs.

... This was manageable without much effort.

 After a re-org, our group became the proud owners of 100+ UPSs.

... And most of them weren't shiny and new!

 After staging through denial, anger, bargaining, and depression, we accepted it.

... This is how we got over most our grief.

Initial Status The Reality of Square One

- Responsible for 100+ UPSs (and growing!)
- ~10 were outright failed
- ~10 were in a faulted state
- 40+ were found to be 8-16 years old (5 year lifetime)
- Configuration was manual, onerous and inconsistent
- Deployment took a very long time (1++ hour)
- Monitoring was impossible
 - Sheer volume of error messages (X,000+/per day)
 - System age
- Our attitudes towards the system were awful
 - Dread
 - Apathy
 - A few resumes were tuned up

Initial Analysis Is the system worth improving?

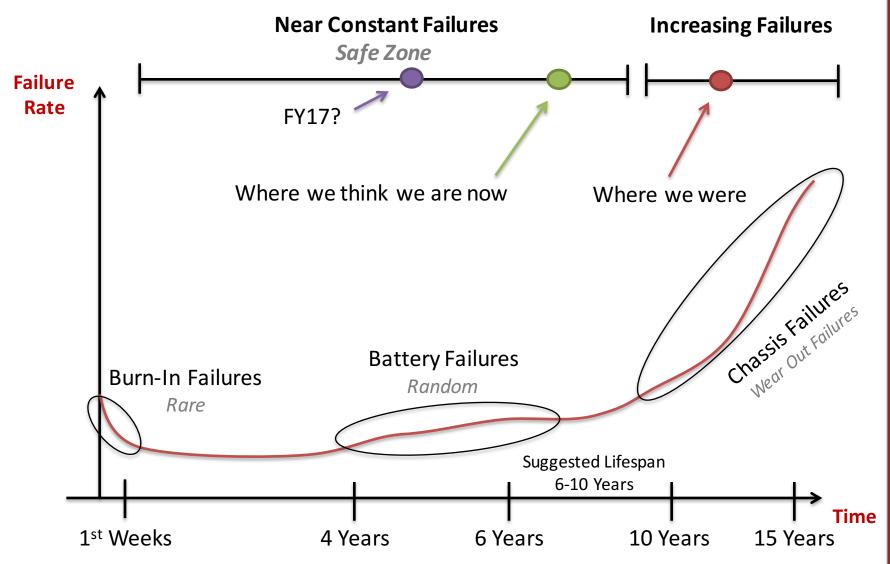
• Is the system's functionality still necessary?

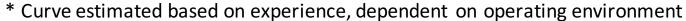
- Servers, network gear and critical IOCs need to survive power interruptions.
- UPSs provide the only low-cost solution to fulfill this need.

• Is the benefit worth the cost and staff time?

- ~ \$50K to make the overall system reliable and ~\$10-20K/year to maintain
- The recovery costs and reduced beam availability associated with frequent power-outages greatly exceeds the cost of maintaining UPSs for critical systems.

• Is it possible to improve the cost/benefit ratio?


- We felt we could decrease the time spent maintaining these systems by applying practices common to our other systems.
- o The benefit could be improved with better reliability and selective application.
- Costs could be spread over years with a well maintained system.


• Do you have management buy in?

- We had to convince management that the benefit would be worth the time, effort and procurement dollars.
- It is impossible to improve or maintain a system without resources!

Reliability Study UPS Failure Rate

Improving Availability

Availability Depends on Reliability and Manageability

$$AVAILABILITY \approx \frac{MTBF}{(MTBF + MTTR)}$$

- Maximize Reliability
 - Make MTBF as big as possible
 - Mitigate unreliability where MTBF cannot be reduced
- Maximize Manageability
 - Make MTTR as small as possible
 - Proactive replacement/maintenance where MTTR cannot be reduced

MTTR - Mean Time to Repair.

MTBF - Mean Time Between Failures.

Maximize Reliability Increase MTBF

Get the System to a Manageable State (stability point).

- Inventory audit You have to know what is out there.
- o Replace failed units.
- Repair/replace units in error/faulted state.

Reduce Complexity

- Get rid of unnecessary units.
- Remove unnecessary components (PDUs, Transfer Switches ...)
- Reduce unwanted loads on the system.

Implement Redundancy

- Design/Deploy systems with redundant power supplies.
- o Implement redundant systems so failures are actually tolerable.

Monitor for Faults, Failures and Predicted Failures

- Email Alerts from units themselves and active polling
- Alerts for low Runtimes, Faults and Failures
- Performance Graphing for historical perspective and statistics
- Failure Prediction
- Centralized Logging for history and analytics

Maximize Maintainability Decrease MTTR

Corrective rather than Preventative maintenance

- Predicted failures are replaced before problems arise
- Actual failures are replaced quickly
- o Batteries are replaced when there are faults not on a schedule
- Configuration changes and updates are done globally

On the shelf spares

Implement redundancy wherever possible

- o MTBF and MTTR are zero if system is redundant!
- Critical systems always have dual power supplies and UPSs

Automate as much as possible

- Research available tools (open source and vendor provided!)
- Automation produces consistent and complete configuration
- Custom scripts can automate tasks and deployment (~5 min)
- "If you do something more than once, you should write a script to do it!"

Vendor Tools Automation and Monitoring

APC UPS Network Management Tools

- Monitoring, Control and Remote Access
 - Web browser
 - Command line interface
 - o SNMP, SSH, FTP ...
- Event and Data Logging
- Scheduled Self-Tests
- Email Notification
 - o Faults, Failures & Warnings
 - Self-Test Results
 - Configuration Changes

Custom Tools Automation

Scripting Framework

- Global management tasks via custom scripts
- Scripts leverage vendor tools
- Simple text file database of UPSs
- Centralized configuration management
- Configuration consistency checks
- Information gathering tools

Problems found: 0

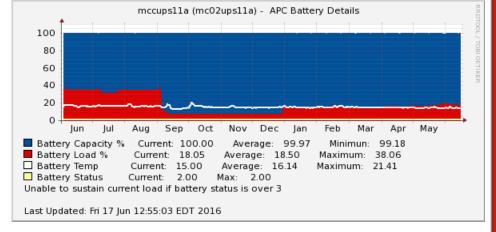
```
└ [root@opsfs scripts]# ./get-batt-replacement-date.pl mccups10
Community [public]:
mccups10
                 09/01/05
 [root@opsfs scripts]# ./get-batt-replacement-date.pl
 Community [public]:
 aceups01
                 05/27/2014
 ams01b03ups01
                 04/17/2013
 ams01b03ups02
                 03/22/2013
 bs04b07ups01
                 11/15/2015
cl02c06ups01
                 06/01/13
cl02c10ups01
                 09/28/2015
cl03ups01
                 09/17/2014
                 03/25/2015
 cl03ups01a
cl03ups10
                 07/11/2012
```

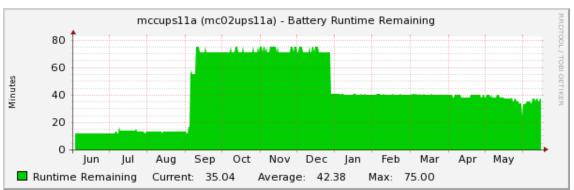

Custom Tools Automation

Rapid Deployment System (~5 mins)

- Automated deployment with custom scripts
- Process leverages vendor provided tools
- Easy and well documented procedure
- Consistent and complete configuration
- Rapid and automated reconfiguration

```
[upsadm@node scripts]# ./deploy_new_ups.pl mccups13
Username [apc]:
Password [apc]:
Community [public]:
```

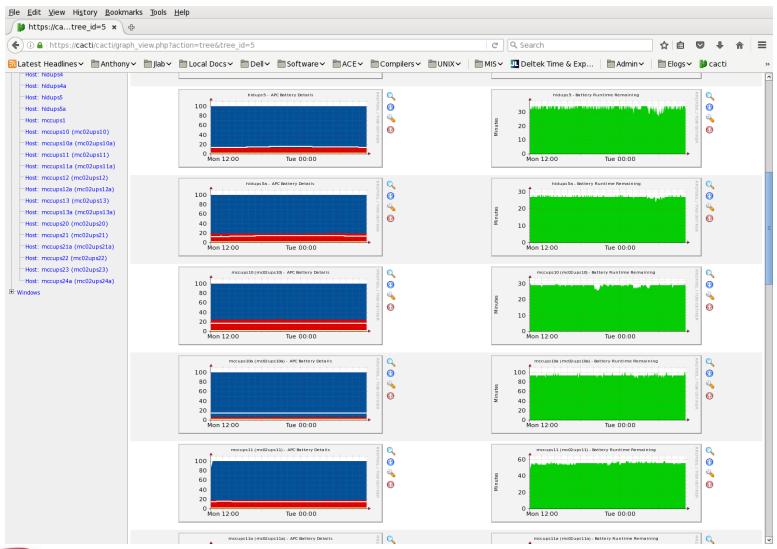

Ready to run on the following UPSes. mccups13
Continue (y/N):



Monitoring Tools Graphing with Cacti

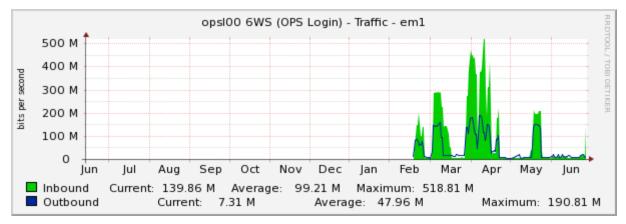
Cacti – Open Source Polling and Graphing Framework

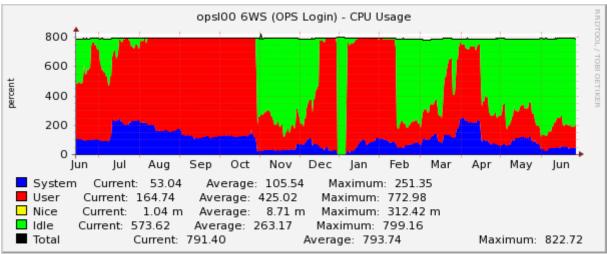
- Performance Monitoring via SNMP
- Adaptable to Graph Virtually Anything
- Historical Statistics
- Problem Identification
- Failure Prediction
- Global Overview
- Free



Monitoring Tools Cacti

Custom Global Overviews





Monitoring Tools Cacti

Adaptable to Graph Virtually Anything

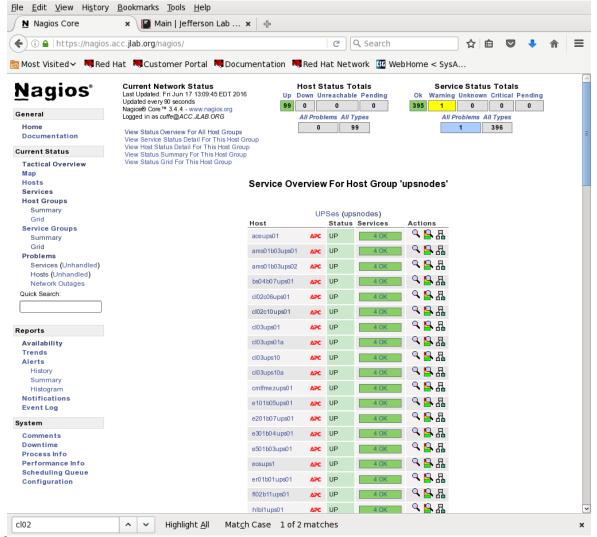
... even mis-behaving users

Monitoring Tools Status Polling with Nagios

Nagios – Open Source Monitoring Framework

- System and Service Status Polling via SSH, SNMP, ...
 - o Runtime Warnings
 - Fault and Failure Detection
 - Active and Negative Service Monitoring (want SSH but not FTP running)
- Easily adapted to almost any need and for multiple groups
 - Already monitoring services for others groups like AHLA
 - Group based service/system notification
- Email/SMS Alerts
- Web based H.U.D.
- Monitor for Monitoring
- Free

** NAGIOS PROBLEM Alert: hareboot1.acc.jlab.org/FTP is CRITICAL **


** NAGIOS PROBLEM Alert: eosups1.acc.ilab.org/RUNTIME is CRITICAL **

From System Account ACE Group <accadm@jlab.org>

Monitoring Tools Status Polling with Nagios

Heads-Up-Display

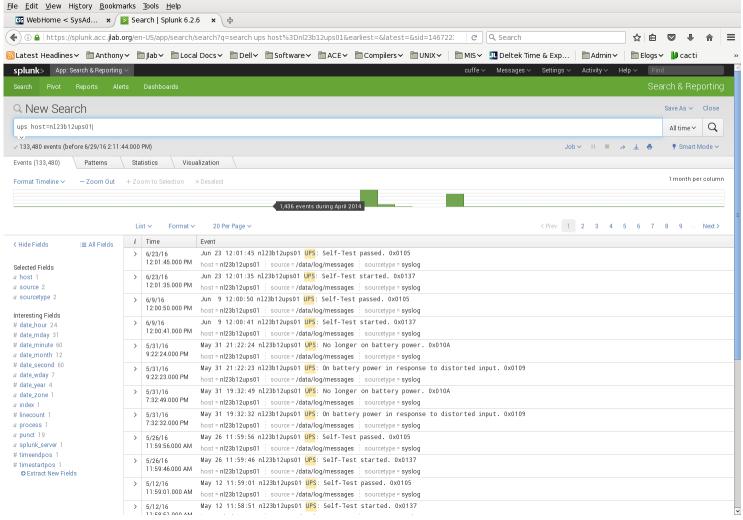
Logging Tools Centralized Logging w/Analytics

Swatch (Syslog Watch)

- Filter and Summary Tool for centralized logging filter out normal, noisy logs
- Daily Reporting via Email
- Extensible Filtering easily add custom filters
- Open Source

Splunk

Splunk is a fully featured, powerful platform that collects and indexes any machine data from virtually any source in real time. We feed it our centralized logs.


- Index any Text Data
- Interactive Search Results
- Monitoring and Alerting
- Reporting and Analysis
- Event Correlation
- Custom Dashboards
- Add-in apps
- Already extended to other groups
- Not Free but DOE contract in works!

Logging Tools Splunk

Deep-Dive Your Data

Results Higher Availability with Lower TCO?

• Before (10–15 units):

- Configuration was manual, onerous and inconsistent
- Deployment took a long time (+1 hour)
- Attitudes towards system were apathetic or dreadful
- Monitoring was nonexistent or a deluge.
- o Failures were commonplace and faults were ignored.

• After (100+ units):

- Configuration is automatic, fast and consistent.
- Deployment is very quick (~5 minutes).
- Replacement is now simply a routine task.
- Monitoring is proactive, accurate and very predictive.
- Failures are rare and faults are dealt with quickly.

Key Points to Take Away

- Buy in by management a must.
 - You cannot maintain a system without resources!!
- Redundancy wherever possible
 - MTTR and MTBF are virtually zero with redundancy!
- Automate as much as possible
 - Ensures standardization.
 - o Reduces staff time.
 - o Improves the culture.
- Monitor as much as possible
 - Failure notification and prediction is critical!
 - Fixing things before they break means zero downtime!
 - What you don't know usually hits you hardest!
 - Pretty graphs and real data translate into better budgets!
- Find or create tools to make things faster and easier
 - Research vendor and open source solutions
 - Simple solutions like shell scripts can be very powerful
- Leverage the expertise of other groups

Q&A

