

Data-Driven Machine Retuning

2016 StayTreat

Accelerator Operations Department

Run Until It Breaks (or Cries)

- The operations paradigm at CEBAF seems to be (mostly) "Run Until It Breaks"
 - A reasonable reactive paradigm for repairs
 - Preventive maintenance occurs during SADs or opportunistically behind failures
 - History: CEBAF used to be scheduled preventive maintenance
- Corresponding optics paradigm: "Run Until They Cry"
 - Users tasked with monitoring beam quality after setup
 - No tuning until:
 - Scheduled configuration change
 - Hardware (or beam studies) breaks
 - Users cry < topic of this discussion
 - Terry will cover tune time tracking in DTM

Run Until They Cry

- Is it the right paradigm for optics tuning?
- Pros:
 - Gives priority hall control over program
 - Potentially long intervals between tuning
 - Great (?) beam after aggressive tuning
- Cons:
 - Optics adopts a reactive stance
 - Retuning mentality: "fix everything while we're here"
 - Possibly longer tune time when it occurs
 - Retune usually a change that improves symptom
 - Harder to identify root causes
 - Users remember when they cry too much

Daily Invasive Measurements

- We currently (sometimes) perform some daily invasive optics measurements
 - Daily QE measurements
 - Daily fopts
 - Useful to detect gross beam transport changes after 1S (but not injector)
 - See next page for plot of fopt frequency
 - Suggests that we did not do enough systematic tuning during January restoration
- Routine fopts are probably not be cost-effective
 - Can easily (even often) be degenerate
 - Not precise enough to drive small optics changes
 - Benefit: tracking medium-term dispersion

4/10

Frequency of fopts

T. Satogata

(Random) Degenerate fopt

Daily Invasive Measurements: Profiles

- Cost/benefit of daily beam profile data collection?
 - Viewers: not precise enough
 - Also not amenable to automated capture/analysis
 - SLMs: archivable, parasitic at certain locations
 - Need to be treated analytically: priority?
 - Daily fast harp scans (3-5 mm/s) may be cost effective in finding/characterizing small drifts
 - particularly correlated with fopt/rayTrace
 - simple to automate: ~45s/harp of tune beam
 - Routine profile measurements give precise tracking of transverse injector beam parameters
 - Reinstitute 0L07-10 emittance measurements?

Daily Invasive Measurements: rayTrace

- Cost/benefit of daily rayTrace instead of fopt?
 - Avoids fopt degeneracy
 - With tool development, data acquisition time is about the same
 - Analysis tools are being resurrected/developed
 - Large potential to benefit startup/config change
 - Potentially precise enough to
 - drive fine retuning
 - localize/identify drifting magnet power supplies
 - characterize complete transport stability

Issues and Open Questions

- We are tasked with improving accelerator reliability
 How do we minimize "crying users" tune time?
- Is the current "fix it when they cry" paradigm right?
- Can daily/routine optics measurements and improved routine analysis catch optics problems before they are big enough to make users cry?
 - If so, can we learn root causes well enough to fix them quickly (even routinely)?
 - Can this also provide input to priorities in preventive maintenance?
 - Can we raise priority of analyzed SLM data?
 - Are routine rayTrace and/or harp scans cost-effective?

9/10

