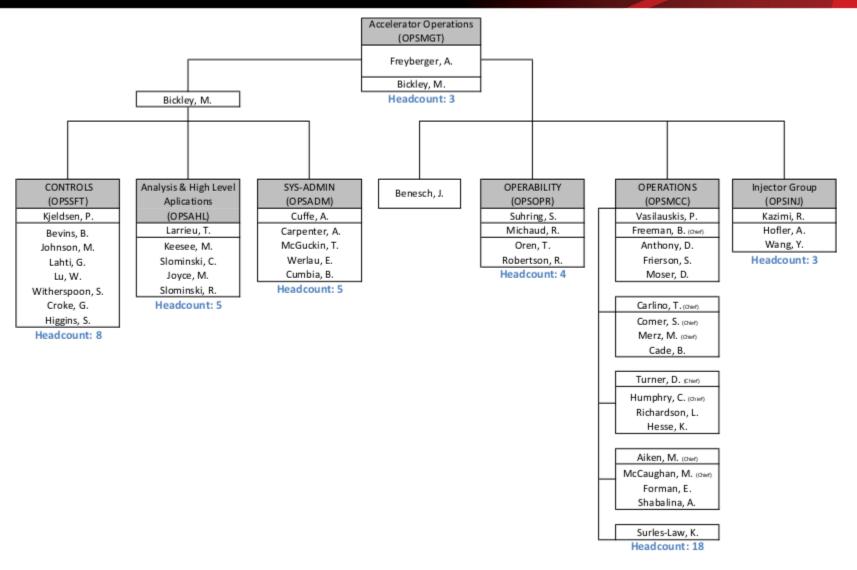


JLab Accelerator Controls

Matt Bickley MaRIE discussion April 26, 2016

Outline

- Controls scope and architecture
- CEBAF controls; a brief history
- Subsystems

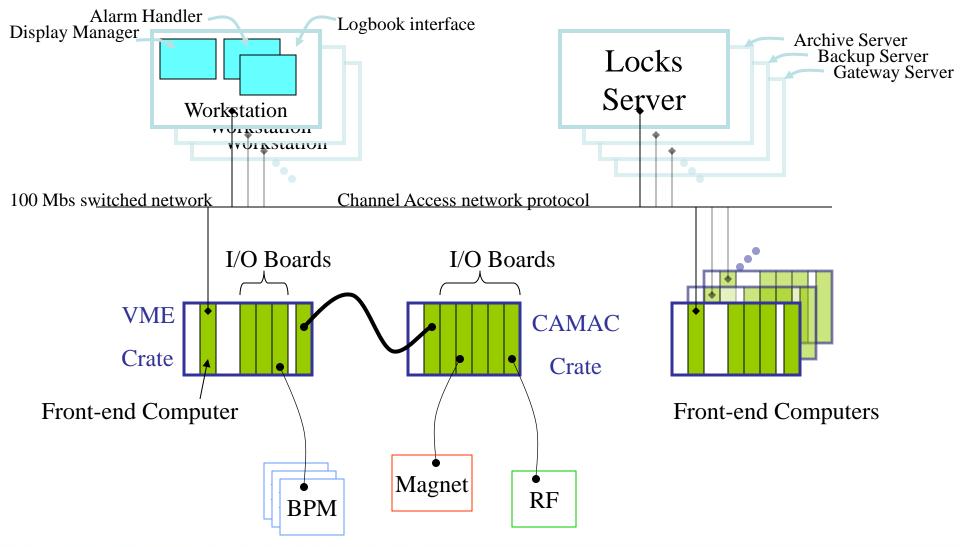

Controls Scope

- Support 24/7 operation
 - Accelerator: from the injector to the beam dumps
 - Central Helium Liquifier (CHL)
 - Low-Energy Recirculator Facility (LERF)
 - Portions of the experimental endstations
 - Unified Injector Test Facility (UITF)
- Develop and maintain device control, high-level software and manage computing environment
 - Dynamic accelerator environment with regular changes to hardware and configuration
- Collaborate with the world-wide controls community

Operations Department

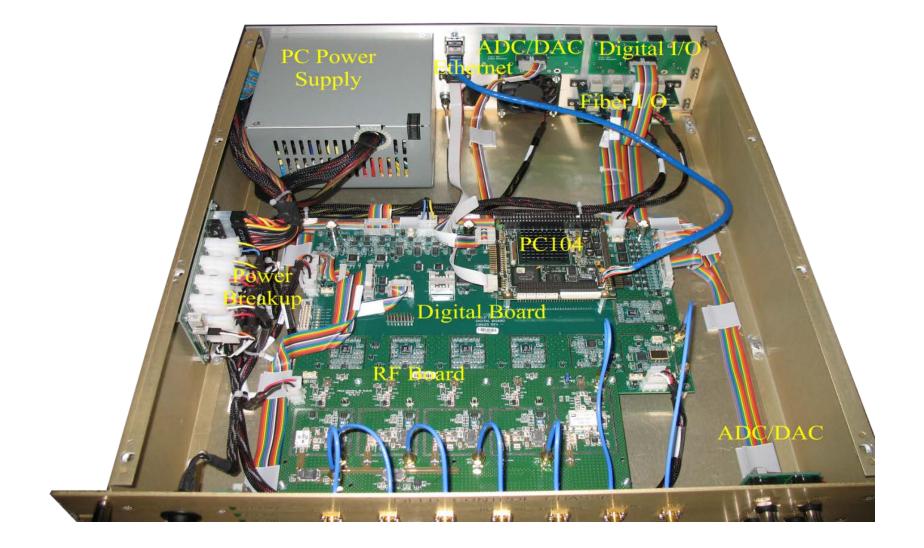
Control System Architecture

- Based on the Experimental Physics and Industrial Control System (EPICS). See <u>http://www.epics.org/</u>
 - Open-source control system toolkit
 - Started at Los Alamos; advanced by Argonne; furthered by JLab starting in 1995
 - More than 100 EPICS collaboration members today
- Scale of CEBAF controls
 - 550 front end computers
 - 50,000 hardware control points
 - 300,000 "soft" control points


Control System Architecture

- Applications
 - Beam diagnostics and controls
 - Synoptic displays, alarm managers, stripchart, archivers
 - Databases, logbooks, planning and coordination tools
 - LINAC energy management, orbit and energy locks, beam optics and steering tools
- Technologies
 - EPICS-based control system
 - VxWorks, RTEMS and soft front ends
 - C, C++, Java and PHP for code development
 - X-windows based user interfaces

Control System Architecture


PC104 and custom FPGAs

- Front end executes on small form-factor, lowperformance PC (PC104)
- Narrow interface from front end PC104 to Field-Programmable Gate Array (FPGA)
 - ISA (16 bits, 8 MHz)
 - PCI (32 bits, 33 or 66 MHz)
- FPGA executes customized high-performance digital signal processing and control algorithms
 - Low-level RF field control
 - Beam Position Monitor signal processing
 - Beam Current Monitor signal integration

Digital Field-Control Chassis

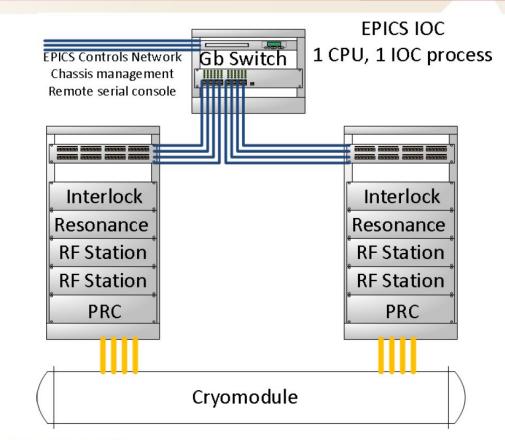
"Soft" Front Ends

- Front end computer with only a network connection
 - Executes on any computer
 - Increasingly used on virtual machines
- Controls development tools and environment are the same as those for hard front ends
- Enables isolation of controls
- Makes network-based adapters very appealing e.g. ethernet->GPIB adapters

Controls History

- Started in 1990 with custom HP-based software communicating only with CAMAC crates
- Adopted EPICS in 1994; VME-based SBCs
- Sun servers added in 2001
- Migration to (RedHat) linux on back ends started in 2003
- PC104/custom FPGAs in 2012
- "Soft" front ends in widespread use in 2013
- Overall directions:
 - Away from proprietary hardware and software
 - Increasing flexibility in location of control algorithms (FPGA, hard or soft front ends)

Subsystems: RF


- C20/C50 CAMAC-based analog controls
- C100 PC104-based digital controls
- Future direction: C20 and C50 digital controls
 - PC104 replacement (same fundamental design)
 - LCLS-II design
 - On-site testing starting in summer '16
 - Hands-on performance and management
 experience
 - Next two years will provide a guide

Subsystems: RF (LCLS-II Low-Level RF)

System for One Cryomodule

LCLS-II LLRF PDR, March 3-4, 2016

4

Subsystems: Safety

- Personnel Safety System
 - Safety PLCs programmed by safety professionals
 - Dedicated, isolated network
 - Read-only monitoring from the control system
- Machine Protection System
 - CAMAC- and VME-based
 - Fast Shut Down
 - Beam Loss Accounting
 - Beam Loss Monitoring
 - Beam Envelope Limit System (beam power)

Subsystems: Cryogenics

- Migrating to PLC-based equipment control
 - CAMAC systems being phased out
 - PLC programming by cryogenics experts
 - Front end->PLC by controls group
- High-level capabilities collaboratively developed
 - Heat management (electric vs. RF heat)
 - Interaction between RF and cryogenic systems

Subsystems: Conventional Facilities

- Maintained by Facilities Management Division
 - Controls interfaces developed as-needed
- Monitoring, archiving and alarming
 - Chillers
 - Low-conductivity water systems
 - Grid power

 Integration outside of system procurement is expensive and time-consuming

CEBAF Element Database (CED)

- Flexible database storing accelerator description
 - Beamline elements (magnets, diagnostics, etc.)
 - Populated from Elegant beamline deck
 - Associated control information
 - Cabling
- Driver for many operational tools
 - Hot checkout
 - Alarm configuration
 - On-the-fly synoptic displays
 - Front-end software configuration
- Development late in CEBAF's life makes this much harder

Controls Plans

- Broaden integration of CED
 - Automated configuration of front-end controls
 - Ties to maintenance database, task management
 - Improve tools to enable data management by system experts (who own the data)
- Replace PC104s in new hardware solutions
 - Increase flexibility and capability
 - Take advantage of new hardware functionality
- Real-time linux on front-end computers
 - Simplify system management
 - Increase flexibility of hardware choices
- Address system administration challenges
 - Many hundreds of front-end computers

