

Update on the JLEIC Project

Fulvia Pilat

JLEIC 3rd Collaboration Meeting

- 1st Collaboration Meeting
- 2nd Collaboration Meeting

March 2015 October 2015

- 3rd Collaboration Meeting:
- 1. Bunched beam electron cooling and ERL cooler
- 2. Detector interface and interaction region
- 3. Update on R&D program
- 4. Plans for pre-CDR and project development

JLEIC Collaboration Meeting Goals

 Define and compare options with the goal of optimizing cost and performance for the:

electron cooling IR and detectors

- Discuss and define roles, responsibilities and deliverables of collaborators for:
 Design optimization
 Pre-project R&D
 Pre-CDR writing
- Engage industrial partners and form basis for collaboration and potential SBIR's
- Plan future Collaboration Meetings

outline

EIC Overall vision and plan

Update and progress – last 6 months

- LRP process concluded EIC highest priority for new construction
- EIC Users Group Meeting
- 1st JLAB Accelerator Advisory Committee

January 2016 February 2016

Technical progress

Plans and priorities for next 6 months

- Baseline review
- Advance design and R&D
- JLEIC pre-CDR and project development → talk on Thursday

4

end April 2016

JLEIC Baseline

JSA

Campus Layout

e-p Luminosity

CM energy (GeV)

The baseline performance requires a single pass ERL bunched beam cooler Without bunched beam cooling luminosity down only factor 2-3

7

JLAB EIC Timeline

- JLAB EIC design starts White Paper: physics case, machine requirements Preliminary conceptual design report Design optimization, EICAC reviews NSAC/LRP process starts Internal and Director's reviews JLAB EIC Design Summary document NSAC/LRP Cost Review 1st JLAB EIC Collaboration Meeting
 - NSAC/LRP: EIC Recommendation 3
 - 2nd JLAB EIC Collaboration Meeting
 - EIC Users Group Meeting

early 2000 2011, refined in 2012-14 2012 2012-2014 2014-2015 January 2015 January 2015 March 2015 October 2015 October 2015 January 2016

LRP Recommendation 3

We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB.

8

EIC Timeline

Activity Name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
12 GeV Operations																
12 GeV Upgrade																
FRIB																
EIC Physics Case																
NSAC LRP																
NAS Study																
CD0																
EIC Design, R&D Pre-CDR, CDR						p	re-proj Pre-C	ect DR	on- CD	project						
CD1(Down-select)																
CD2/CD3																
EIC Construction																

CD0 = DOE "Mission Need" statement; CD1 = design choice and site selection (VA/NY)
CD2/CD3 = establish project baseline cost and schedule

JLAB EIC Plan

GOALS

deliver pre-CDR by ~end FY17 (ready for CD0) deliver CDR by FY18-19 (ready for CD1, down-select?)

Activities:

- Baseline design optimization (cost reduction)
- Pre-project R&D planning and execution
- Enhance synergy and collaborations with labs, universities and industry
- Completion of civil site development

10

1st JLAB Accelerator Advisory Committee

- Overall review of Operations, JLEIC and Accelerator R&D, February 17-18, 2016
- Charge JLEIC
 - Is the design team addressing the right issues?
 - Are the expectations for a conceptual design in 2018 reasonable?
 - Are the resources sufficient? If not, assuming limitations, for which aspects should extra resources be deployed?

Comments JLEIC

- The design JLEIC CM energy of 65GeV is slightly low when compared to the EIC white paper specifications.
- The stated incremental project cost, which should be validated, for pushing the CM energy to 100GeV by the use of Cosine-Theta magnets would be a small fraction of the total project cost.
- The use of electron cooling for the proton and ion beams results in challenging and beyond the state of the art parameters.
- The JLEIC study does not yet properly address all the issues related to the vacuum system (ion instabilities, experimental background, synchrotron radiation, etc)

12

Comments JLEIC

- Simulation of finite-angle collision beam-beam interactions should be extensively conducted, particularly for halo formation. Halo can cause large background for the detectors, while adding a collimator to eliminate the noise can significantly reduce the lifetime. Since it can be very difficult to simultaneously reduce the background at both IPs and maintain a useful lifetime, an appropriate model should be created.
- The presented outline of the Pre CDR document does not seem to be complete:

A plan on how to satisfy the DOE requirements for large construction projects (CDR, CD0, CD1, etc) was not presented.

13

Recommendations JLEIC

- Prepare a detailed cost comparison between the use of super-ferric and cosine-theta magnet design.
- JLAB response: initiated a cost estimate for 200 GeV ion collider option (L. Harwood talk)
- Ensure that the Pre CDR document is complete.
- JLAB response: detailed outline for a pre-CDR and project development (F. Pilat talk)

JLEIC lumi: Baseline and Upgrade

Baseline Design progress highlights in 2015 - to date

- Studied lower energy SRF linac and stripping scheme
- Started technology study for ion linac (warm vs cold)
- Evaluated racetrack vs. figure-8 configuration for the booster, ion collider
- Ion Polarization design finalized and spin tracking in progress
- e- Polarization design finalized and spin tracking in progress (with DB)
- Cooler design group formed, ERL cooler design in progress
- Cooling simulations in progress
- Completed basic scheme of proton and ion beam formation
- Beam synchronization scheme (summary report published)
- Studied emittance reduction options in the e-ring
- Chromaticity correction scheme finalized
- Solenoid compensation studied
- DA aperture study and sensitivity analysis in progress
- Collective effects inventory
- Beam beam code development in progress

16

JLEIC Pre-project R&D Program

Main scope: (2015-2017)

Ion collider ring magnets R&D:

super-ferric magnet prototype: design, winding mock-up, prototype and test (Texas A&M)

evaluation cos-theta designs (LBL)

- FF quadrupoles, design and integration (Texas A&M, LBL)
- 952 MHz SRF cavities for cooler and ion collider: design and prototype (JLAB)
- 952 MHz crab cavity design, integration, prototype (ODU, JLAB)
- Magnetized source for e- cooler (JLAB LDRD, Cornell SBIR)
- Bunched beam cooling experiment (INP, JLAB)
- Ion Injector optimization (ANL.JLAB)
- IR optimization (SLAC, JLAB)

JLEIC Pre-project R&D: progress in 2015 – to date

Super-ferric prototype, Texas A&M :

\checkmark	Design	Jun 2015
\checkmark	winding down-select and winding mock-up	Mar 2016
	construction	2017
	cold test	end 2017
952	MHz SRF cavity for cooler, JLAB:	
\checkmark	design down-select	Dec 2015
	prototype	end 2016
952	MHz cavity for ion collider, JLAB:	
	Design down-select	Dec 2016
	Prototype	end 2017
952	MHz crab cavity (ODU, JLAB)	
\checkmark	design outline and plan	Dec 2015
	design, integration, prototype	end 2017
FF	quadrupoles, design and integration	end 2017
Mag	gnetized source for e- cooler	
\checkmark	JLAB LDRD awarded and work started	end 2015
\checkmark	Cornell SBIR awarded and work started	
Bur	iched beam cooling experiment (INP-JLAB)	
\checkmark	Planning, design (JLAB 2015 LDRD)	Dec 2015
\checkmark	Engineering and tests in progress	
	Experiment run	May 2016

Next 6 months: accelerator goals

Outline pre-CDR	March 31
Pre-CDR tasks-list, including simulation effort	April 15
with names, institutions, timeline	
Baseline review (footprints, linac energy,	~end of April
e-ring, BBC staging approach)	
LDRD proposals for 2017	April 29
NP EIC Accelerator R&D FOA	May 2
200 GeV cost estimate	~June 2016
Configuration management and control	August 2016
parameter tables	
lattices and element database	
nomenclature	
document	

EIC R&D: NP FOA's

• FY16

Research and Development for Next Generation Nuclear Physics Accelerator Facilities

Post date: March 4 2016

Close date: May 2 2016

To labs and university: 1.8 M\$ including JLEIC, eRHIC and possibly other R&D

• FY17

In addition to the **R&D FY17 funds** NP will redirect and pool ~2.5% **operations funds** from JLAB and BNL to support EIC R&D A **panel** will be convened in late summer to prioritize areas and topics An FOA and call for proposal will follow at a later date

FY18 and beyond

Budget request for EIC are being formulated (with EIC recognized by LRP as the highest priority for new construction in NP)

EIC design and R&D focus

 Bunched beam electron cooling ERL Cooler design Magnetized source for e-cooler Bunched beam cooling experiment 	(JLAB) (JLAB LDRD, Cornell SBIR) (JLAB, IMP)	
Magnets for the ion booster and collider •Super-ferric magnet R&D for 3T , prototype, IR magnets •Super-conducting magnets design for 6T, IR magnets	(Texas A&M, JLAB) (LBL, JLAB)	FOA FOA
SRF cavities and crab cavities 952 MHz crab cavity design, integration, prototype 952 MHz SRF cavities for cooler and ion collider:	(ODU-JLAB) <i>(JLAB)</i>	FOA
Ion injector SRF linac design, stripping, simulations	(ANL, JLAB)	FOA
Interaction Regions and beam dynamics IR design, detector interface, backgrounds, collimation Non-linear dynamics, corrections, DA	(SLAC, JLAB) (SLAC, JLAB)	FOA
Beam physics and simulations	(JLAB \rightarrow collaborations)	FOA

FOA proposed timeline

- March 18 Kick-off video-conference
- March 29-31 Collaboration Meeting at JLAB
- April 1 Magnet meeting at JLAB
- April 7 Deadline proposal outlines
- April 8 Proposal internal review (video-conference)
- April 22 Target date for proposal submission to NP
- May 2nd
 Deadline submission

Conclusions

- Good progress on JLEIC in the past 6 months
- Focus for the 6 months is on advancing design, R&D and plans for the pre-CDR
- Goal is to deliver a pre-CDR by the end of 2017

In my closing talk I will summarize relevant issues discussed at the collaboration meeting and outline the plans for the pre-CDR

