

JLEIC Collaboration 29—31 March 2016 Jefferson Lab

Ion-Side Small Angle Detection

Forward, Far-Forward, & Ultra-Forward

Charles Hyde Old Dominion University

Full Acceptance Detector (-30m, +50 m)

- 3-D imaging:
 - Detect scattered beam particles for $|\delta p|/p > 0.005$ and/or $\theta > 3$ mrad
- Nuclear Final States in Deep Inelastic Scattering:
 - Neutrons in cone (0.5 GeV/c)/(50 GeV/c) = 10 mrad
 - Charged particle fragments from $\delta p/p = -0.5$ (protons) to $\delta p/p = +1.5$ (H fragment)

Forward Region 10 mrad < 0 < 70 mrad

- Outside iFFQ Acceptance
- ◆ 2 Tm (@ 100 GeV/c) Forward Dipole
 - Tracker, PbWO₄ EM Calorimeter
 - Flux-exclusion tube or active anti-dipole shield of electron beam.

Beam-Pipe Design for Forward Angle Detection

- Particles in iFFQ (±10mrad)
 acceptance don't exit until detected
 after D2 or D3
 - Particles in D1 acceptance exit through 30° taper at end of 73.5 mrad flare.
 - 30° taper minimizes wake-field
- End-cap particles exit at angles > 50
 mrad

Far-Forward Tracking

- 50 m long Magnetic Spectrometer
- High dispersion at secondary focus
 - 5 mm separation for dp/p = 0.005
 - ◆ Magnification = -0.5
 - Tracking resolution compatible with beam emittance
- Fixed Tracker at Exit of D2
- Pair of horizontal RP between D2 and D3
- Single side RP after D3

Transport near full momentum

Detection Between D2 and D3

4 cm radius beam pipe accommodates 10 sigma BSC for Po from 20 to 100 GeV/c