In Medium Proton Structure Functions, SRC, and the EMC Effect E12-11-003A

Larry Weinstein, Old Dominion University

O. Hen (contact), L.B. Weinstein, E. Piasetzky, H. Hakobyan Approved to run with deuterium targets in CLAS12

Outline

- The EMC Effect and nucleon modification
- Short Range Correlations
- The EMC SRC correlation
- Measuring nucleon modification

x

Size of effect ("depth" or slope) grows with A

EMC Effect: Theory

Kulagin and Petty, PRC 82, 054614 (2010)

The EMC Effect

A(e,e') ratios: Universality of SRC (Scaling)

 At high nucleon momenta, strength is different but shapes of distributions are similar

 $x = Q^2/2mv$ related to the minimum struck nucleon momentum

JLAB Hall A Experiment E01-015

Looking for correlated partners

Almost all protons with p_i > 300 MeV/c in ¹²C(e,e'p) have a paired proton or neutron with similar momentum in opposite direction

R. Shneor *et al.*, PRL**99**, **072501 (2007)**

R. Subedi et al., Science **320** (5882), 1476 (2008)

What do we know about SRC?

- The probability for a nucleon to have momentum ≥ 300 MeV/c in medium nuclei is ~25%
- More than \sim 90% of all nucleons with momentum ≥ 300 MeV/c belong to 2N-SRC.
- **3** 2N-SRC dominated by np pairs

PRL 108 (2012) 092502

PRL 162504(2006); Science 320, 1476 (2008)

Correlations Between EMC and SRC

O. Hen *et al.*, PRC **85**, 047301 (2012)

Explore Connection between EMC and SRC

Testing the BIG Question:

Measure the in-medium modified(?) structure function F_2 in DIS as a function of nucleon momentum

$$\frac{d^{3}\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{1}{\omega}F_{2}(x_{B},Q^{2}) + \frac{2}{M}F_{1}(x_{B},Q^{2}) \cdot \tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]$$

(F_1 and F_2 are related by R, the measured ratio of longitudinal and transverse cross sections. Thus measuring the cross section yields F_2 .)

- No nucleons modified
- All nucleons modified
 - \rightarrow F_2 independent of momentum
 - → $F_2 \neq$ free F_2 (small difference)
- SRC nucleons modified
 - \rightarrow *F*₂ varies with momentum
 - → $F_2 \neq$ free F_2 (**big** difference)

Predicted Dependence of F_2 on Momentum

Predicted Dependence of F₂ on Momentum

Spectator Tagging

d(e,e'p_s) – CLAS6 (recoil p) E12-11-107 – Hall C + LAD (recoil p) This experiment – CLAS12 + BAND (recoil n)

Experimental method

- ➤ (e,e') Deep Inelastic Scattering from deuterium
- Tag high-momentum nucleons with 300-700 MeV/c backwardrecoiling ("spectator") partner nucleon using d(e,e'N_S)

Experimental Method

d(e,e'N_S) cross section factorizes into the cross section (F_2) and the distorted momentum distribution.

Fix the recoil kinematics and measure x-section ratios at 2 different x':

$$\frac{d^4\sigma}{dx_1'dQ_1^2d\vec{p}_S} \Big/ \frac{d^4\sigma}{dx_2'dQ_2^2d\vec{p}_S} = (K_1/K_2) \Big[F_2^*(x_1',\alpha_S,p_T,Q_1^2) \Big/ F_2^*(x_2',\alpha_S,p_T,Q_1^2) \Big]$$

For $x_1' \approx 0.5 - 0.6$ and $x_2' \approx 0.3$ we shall measure:

$$F_{2}^{*}(x_{1}',\alpha_{s},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}',\alpha_{s},p_{T},Q_{2}^{2}) = \left(\frac{d^{4}\sigma}{dx_{1}'dQ_{1}^{2}d\vec{p}_{s}}/K_{1}\right) / \left(\frac{d^{4}\sigma}{dx_{2}'dQ_{2}^{2}d\vec{p}_{s}}/K_{2}\right)$$

$$x' = \frac{Q^2}{2p_{\mu}q^{\mu}} = \frac{Q^2}{2[(M_d - E_s)\omega + \vec{p}_s \cdot \vec{q}]}$$

 $\alpha_{s} = (E_{s} - p_{s}^{z}) / m_{s}$

x' is x-Bjorken for the moving struck nucleon

$$ec{p}_{s}$$
 maps to $(lpha_{s}, p_{T})$

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios

$$\frac{\sigma_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{\sigma_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \cdot \frac{\sigma_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{\sigma_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \cdot R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$

x' = x from a moving nucleon

 $x_{high} \ge 0.5$

 $0.25 \ge x'_{low} \ge 0.35$ No EMC Effect expected

$$x'_{B} = \frac{Q^{2}_{(Ford)}}{2p_{\mu}q^{\mu}} \stackrel{Q^{2}}{=} \frac{Q^{2}}{2[(M_{d} - E_{S})\omega + \vec{p}_{S} \cdot \vec{q}]}$$

 $x_{B} = \frac{Q^{2}}{2m_{N}\omega}$

FSI correction factor

Minimizing Final State Interactions (FSI)

FSI:

- Decrease with Q^2
- Increase with W
- \blacktriangleright Not sensitive to x'_{B}
- Small for $\theta_{pq} > 107^{\circ}$

We shall:

- Take ratios at large recoil angles
- Involve theoretical colleagues \geq
- A. V. Klimenko et al., PRC 73, 035212 (2006)
- Take more data at $\theta_{pq} \sim 90^{\circ}$ (to characterize FSI)
- Take data at two x' \succ
- \blacktriangleright Use low x' data to study FSI dependence on Q^2 , W'^2 , θ_{pq}

CLAS6 Results: d(e,e'p_s)

Detecting recoil protons in Hall C

Measuring neutrons with Time of Flight (TOF)

I. Korover, Tel Aviv U, PhD Thesis 2015

BAND Design

Looking Downstream

Circles show ~160° and ~170°

Magnetic Field Issues

PMT Shielding studies at ODU this summer

BAND Development

- PMT and scintillant timing tests: Tel Aviv, MIT
- Magnetic field tests: ODU
- Engineering: UTFSM
- Laser Calibration system development: MIT
- Approximate cost: \$650K
 - Scintillant: \$100K
 - 512 PMTs: \$300K
 - Light pipes, mu metal, cables: \$75K
 - Laser calibration system: \$70K
 - Support structure and shielding: \$100K
- Funding: NSF-MRI(?), MIT, Tel Aviv
- Submit MRI January 2017
- Construct BAND, 2017/2018
- Install in Hall B, 9/2018

Deuteron (e,e'n_s) Kinematics

Measure cross section ratio

- for 0.5 < x' to 0.25 < x' < 0.35
 - as a function of p_n or α_n

Expected Results

(results for 75 days beam time at $L = 10^{35}$)

Summary:

Measuring Nucleon Medium Modification

Physics:

- > EMC effect strongly implies that bound nucleons are modified
- SRC and EMC are linearly correlated
- Both phenomena are likely related to high-momentum nucleons

Experiment d(e,e'n_s) with CLAS12 + BAND:

- Directly measure the proton structure function in the nuclear medium as a function of momentum (virtuality)
 - Use spectator tagging to select highly virtual protons in DIS
 - Minimize systematic uncertainties by measuring ratios
 - Run with Run Group B (and other deuteron target run groups)
- Complements neutron s.f. measurements using d(e,e'p_s) E12-11-107 (Hall C + LAD)
- Are nucleons modified in the nucleus? If so, how?
- Can this explain the EMC effect?
- How is this related to short range correlations?