CLAS12 Offline Software Tools

G.Gavalian (Jlab)
CLAS Collaboration Meeting (June 15, 2016)

Overview

Data Formats:

- RAW data decoding from EVIO.
- Reconstruction output banks in EVIO.
- Reconstruction output convertor to ROOT (coming soon).
- Data preservation format (HIPO), compression and fast random access.
 - Fast indexing and error recovery
 - Used to produce small data samples (and DSTSs)

Calibration Framework:

- Powerful 2D detector visualization framework.
- Data analysis library for plotting, fitting (most of the plots in presentations today).
- Interface to constants database, and translation tables.
- Pulse fitting toolkit (database aware).
- Automated calibration constants visualization and analysis.

Reconstruction:

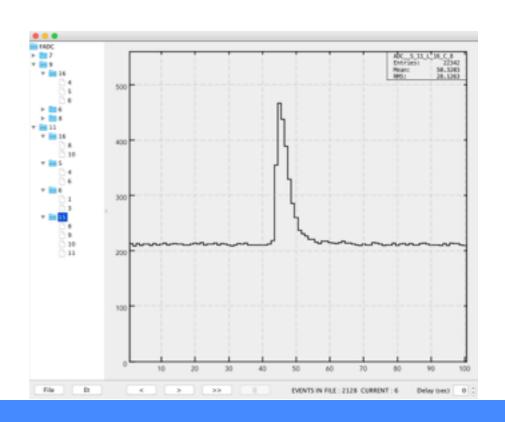
- Modular reconstruction framework (CLARA based)
- Event Builder for full event reconstruction
- ROOT convertor for particle ID and physics analysis

Data Input/Output

✓ Raw DAQ Data

- standard CCDB tables for pulse parameters (NSA,NSB, TET).
- standard tables for Translation Tables (CCDB).
- tools for reading FADC tables and Translation tables.
- visualization and constrain highlighting.
- simple interface to interact with data (independent of the source)

✓ Raw Detector Pulse viewer


- interface for pulse FADC visualization
- fitting for FADC pulse (integration)

✓ Event Decoder

- decoder for compact data structures
- pedestal subtraction/pulse fitter
- creating reconstruction detector banks

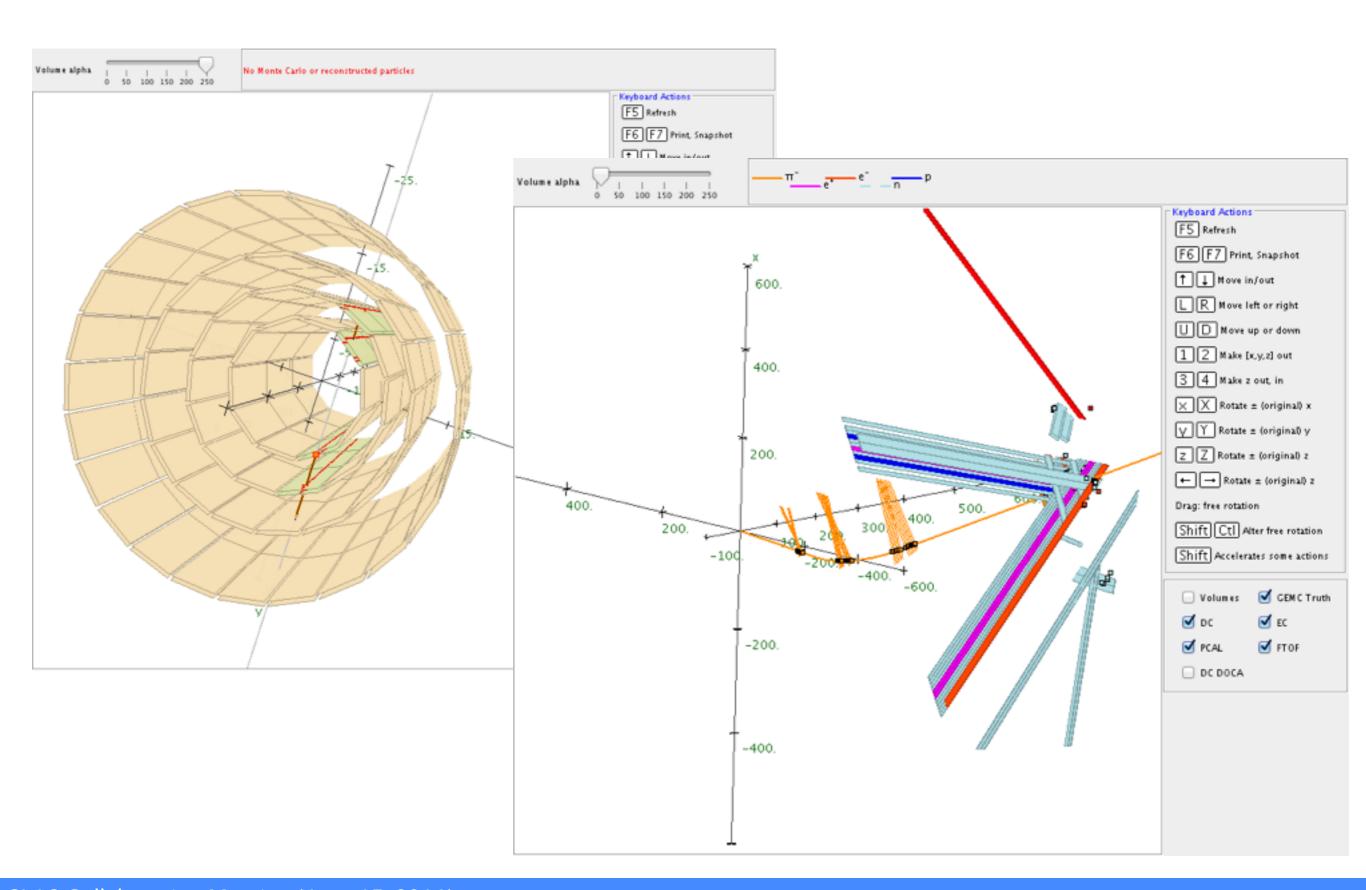
D	[FTOF1A] C/S/C [11	4	13]	S/L/C [2	1	16]	ORDER =	0>>>	TYPE - ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	4	15]	S/L/C [2	1	16]	ORDER =	1>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [12	3	29]	S/L/C [2	1	16]	ORDER =	2>>>	TYPE = TDC	VALUE =	55195
D	[FTOF1A] C/S/C [12	3	31]	S/L/C [2	1	16]	ORDER =	3>>>	TYPE = TDC	VALUE =	55779
D	[FTOF1A] C/S/C [12	3	29]	S/L/C [2	1	16]	ORDER =	2>>>	TYPE = TDC	VALUE =	63708
> event # 4												
> event # 5												
D	[FTOF1A] C/S/C [11	5	4]	S/L/C [2	1	21]	ORDER =	0>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	5	6)	S/L/C [2	1	21]	ORDER =	1>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	6	1]	S/L/C [2	1	20]	ORDER =	0>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	6	3]	S/L/C [2	1	20]	ORDER =	1>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [12	16	4]	S/L/C [2	1	21]	ORDER =	2>>>	TYPE = TDC	VALUE =	57556
D	[FTOF1A] C/S/C [12	16	17]	S/L/C [2	1	20]	ORDER =	2>>>	TYPE = TDC	VALUE =	57484
D	[FTOF1A] C/S/C [12	16	6]	S/L/C [2	1	21]	ORDER =	3>>>	TYPE = TDC	VALUE =	57028
D	[FTOF1A] C/S/C [12	16	19]	8/L/C [2	1	20]	ORDER =	3>>>	TYPE = TDC	VALUE =	56764
D	[FTOF1A] C/S/C [12	16	19]	S/L/C [2	1	20]	ORDER =	3>>>	TYPE = TDC	VALUE =	64944
-	> event 🥖	6										
-	> event 🥖	7										
D	[FTOF1A] C/S/C [11	5	4]	8/L/C [2	1	21]	ORDER =	0>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	5	6]	S/L/C [2	1	21]	ORDER =	1>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [12	16	4]	S/L/C [2	1	21]	ORDER =	2>>>	TYPE = TDC	VALUE =	57660
D	[FTOF1A] C/S/C [12	16	6]	S/L/C [2	1	21]	ORDER =	3>>>	TYPE = TDC	VALUE =	56880
-	> event 🥖	8										
D	[FTOF1A] C/S/C [11	3	13]	S/L/C [2	1	15]	ORDER =	0>>>	TYPE = ADCPULSE	SIZE =	100
D	[FTOF1A] C/S/C [11	3	15]	S/L/C [2	1	15]	ORDER =	1>>>	TYPE = ADCPULSE	SIZE =	100
D	[PTOF1A] C/S/C [12	3	13]	S/L/C [2	1	15]	ORDER =	2>>>	TYPE = TDC	VALUE =	55024
D	[FTOF1A] C/S/C [12	3	15]	8/L/C [2	1	15]	ORDER =	3>>>	TYPE = TDC	VALUE =	55759
D	[FTOF1A] C/S/C [12	3	13]	S/L/C [2	1	15]	ORDER =	2>>>	TYPE = TDC	VALUE =	73541
D	[FTOF1A] C/S/C [12	3	13]	S/L/C [2	1	15]	ORDER =	2>>>	TYPE = TDC	VALUE =	74658

Α	A	A	pedestal		nsa	tet	
1	3	0	93.8	3	15	10	
1	3	1	137.5	3	15	10	
1	3	2	94.6	3	15	10	
1	3	3	125.4	3	15	10	
1	3	4	96.3	3	15	10	
1	3	5	110.5	3	15	10	
1	3	6	138.3	3	15	10	
1	3	7	112.0	3	15	10	
1	3	8	116.1	3	15	10	
1	3	9	101.2	3	15	10	
1	3	10	90.7	3	15	10	
1	3	11	106.5	3	15	10	
1	3	12	87.8	3	15	10	
1	3	13	134.6	3	15	10	
1	3	14	113.1	3	15	10	
1	3	15	109.3	3	15	10	
1	4	0	113.5	3	15	10	
1	4	1	114.7	3	15	10	
1	4	2	119.5	3	15	10	
1	4	3	125.4	3	15	10	
1	4	4	988	3	15	10	

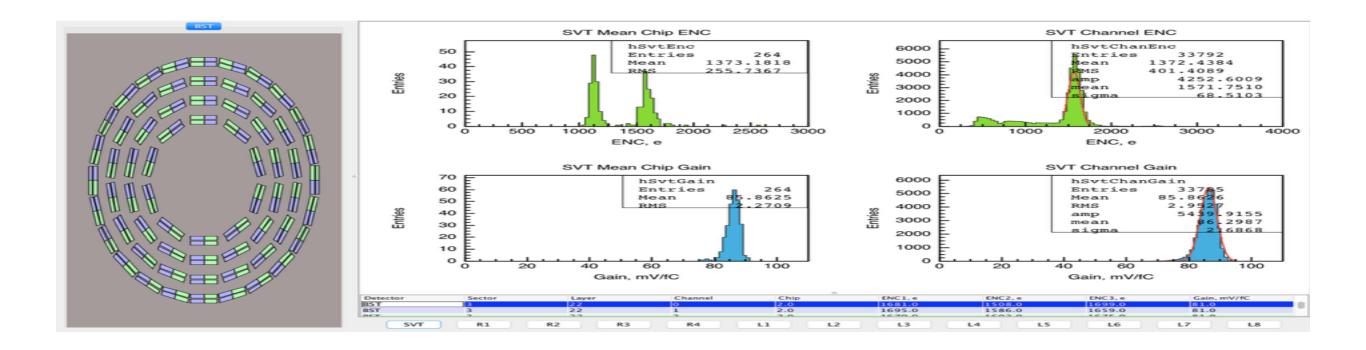
Geometry & Calibration Tools

✓ Standard Detector Geometry Package Implements:

- Forward Time of Flight
- Electromagnetic Calorimeter
- Forward Tagger
- Drift Chambers
- Silicon Vertex Tracker
- Central Neutron Detector

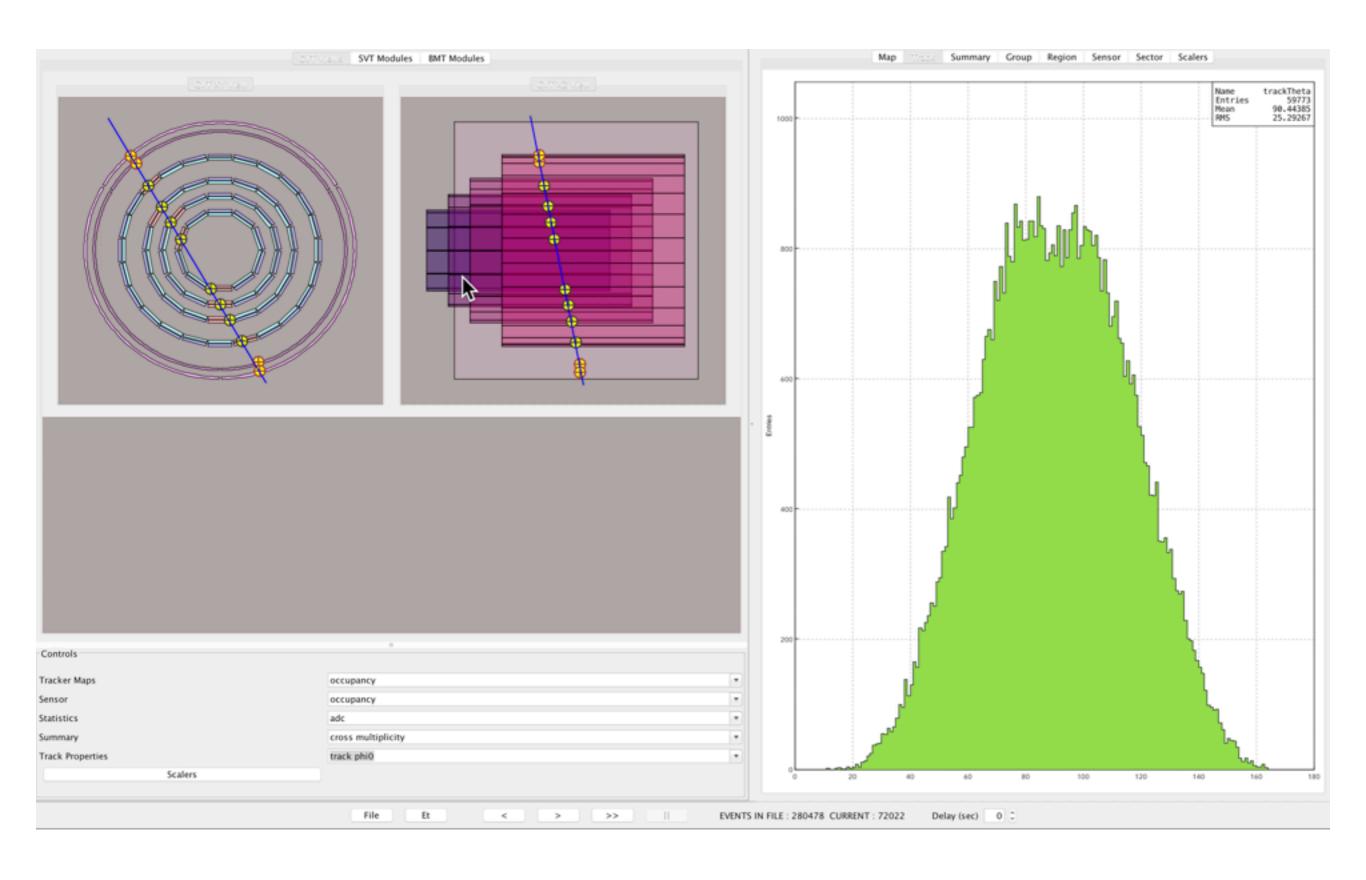

✓ Geometry Tools and Utilities:

- Drawing package for 2D detector representation
- 3D shapes for CED-3D viewer
- Detector component tracker for Fast Monte-Carlo

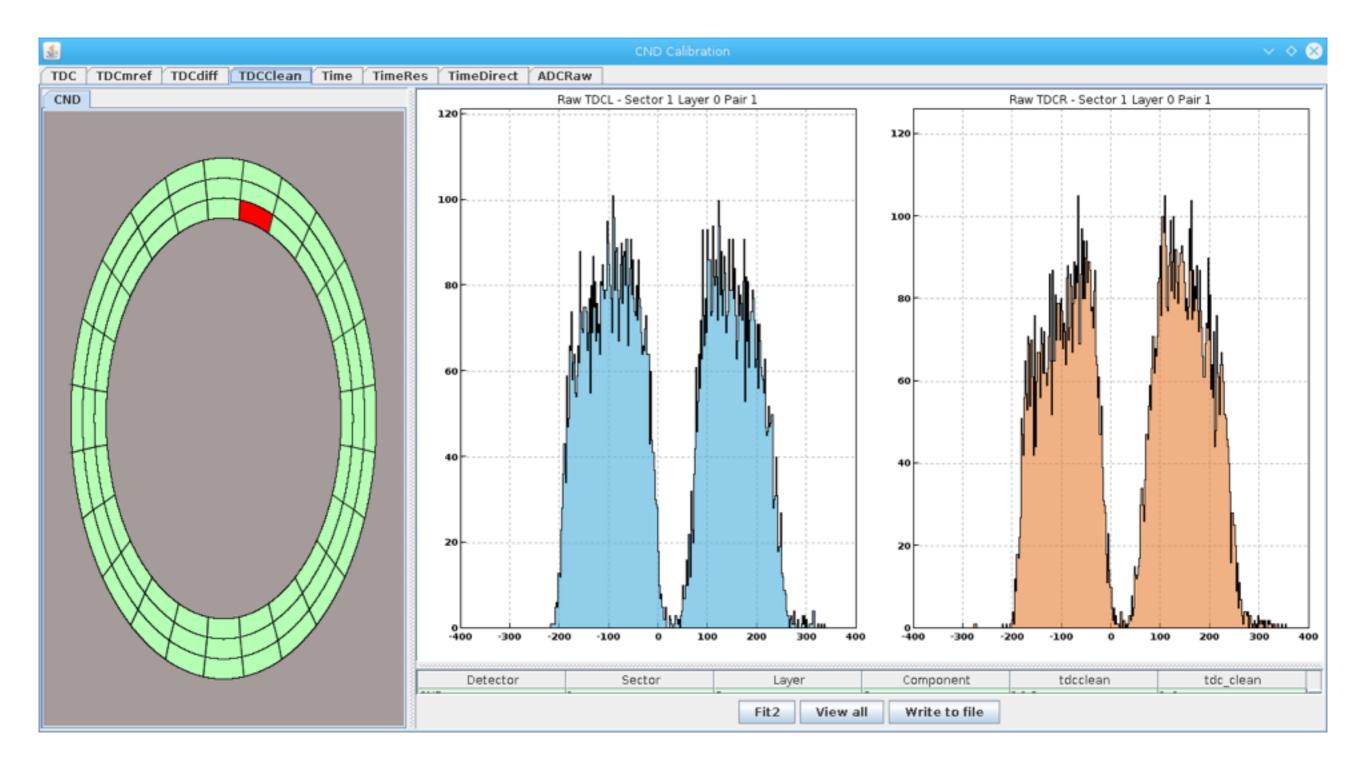

√ Calibration UI:

- new UI for developing Calibration code
- data stream implementation for EVIO files and ET-ring
- reasonable drawing and fitting package

Geometry 3D in CED



Calibration Examples (SVT)

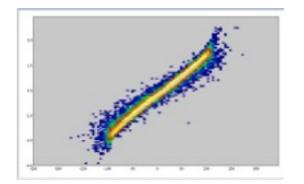


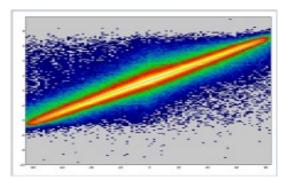
Detector	Sector	Layer	Channel	Chip	ENC1, e	ENC2, e	ENC3, e	Gain, mV/fC
	Sector		Channel	2.0	1681.0	1508.0	1699.0	
BST	3	22	,					81.0
BST	3	22	1	2.0	1695.0	1586.0	1659.0	81.0
BST	3	22	2	2.0	1679.0	1602.0	1675.0	81.0
BST	3	22	3	2.0	1679.0	1583.0	1652.0	81.0
BST	3	22	4	2.0	1681.0	1650.0	1686.0	80.0
BST	3	22	5	2.0	1663.0	1634.0	1641.0	81.0
BST	3	22	6	2.0	1689.0	1607.0	1668.0	81.0
BST	3	22	7	2.0	1650.0	1562.0	1633.0	81.0
BST	3	22	8	2.0	1650.0	1496.0	1651.0	83.0
BST	3	22	9	2.0	1669.0	1599.0	1640.0	83.0
BST	3	22	10	2.0	1642.0	1469.0	1655.0	82.0
BST	3	22	11	2.0	1649.0	1558.0	1603.0	82.0
BST	3	22	12	2.0	1640.0	1539.0	1611.0	84.0
BST	3	22	13	2.0	1642.0	1465.0	1638.0	83.0
BST	3	22	14	2.0	1676.0	1489.0	1642.0	83.0
BST	3	22	15	2.0	1617.0	1545.0	1582.0	83.0
BST	3	22	16	2.0	1629.0	1483.0	1629.0	84.0
BST	3	22	17	2.0	1631.0	1561.0	1586.0	84.0
BST	3	22	18	2.0	1603.0	1460.0	1637.0	83.0
0.07	-	2.2		2.0	1000.0	1100.0	1037.0	22.0

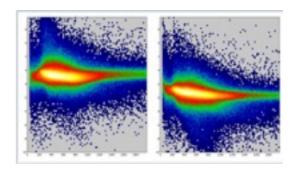
Calibration Examples (SVT) (Y. Gotra)

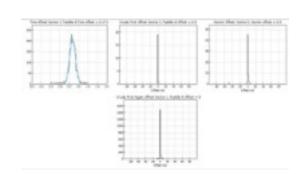
CND Calibration (G. Murdoch)

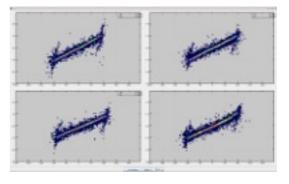
FTOF Calibration (L. Clark)

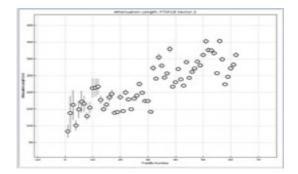

Work completed / in progress


- Conversion of calibration algorithms to COATJAVA framework for high voltage, attenuation length, effective velocity, timewalk, paddle to paddle offsets
- · Script generation for high voltage adjustments
- Output file of calibration constants for transfer to calibration database
- · Summary graphs of calibration values
- · FTOF calibration GUI


FOO Collection Tigh Volkage 1.ch Eight Timewalk (Heckive Volecity Attenuation Length Paddle to paddle) Connectic Steam Sector 2 Paddle 13 Log Auto Sector 2 P

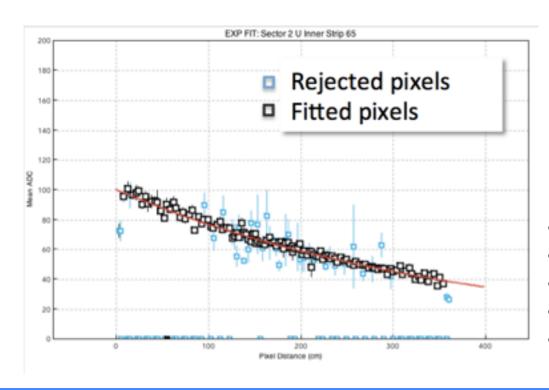

Work planned

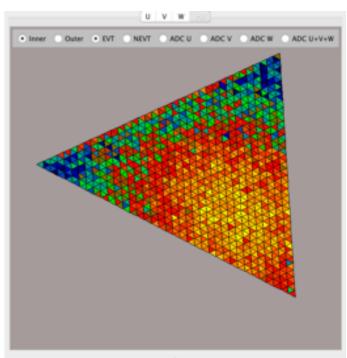

- Conversion of calibration algorithms for RF offsets and counter status
- Full functionality within GUI for each calibration area
- Testing

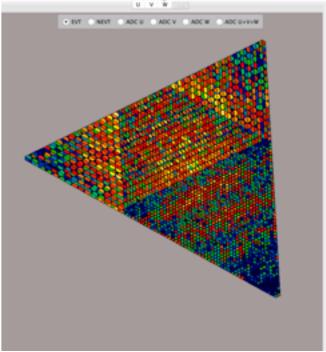


Data Visualization (EC) (C. Smith)

Current Features

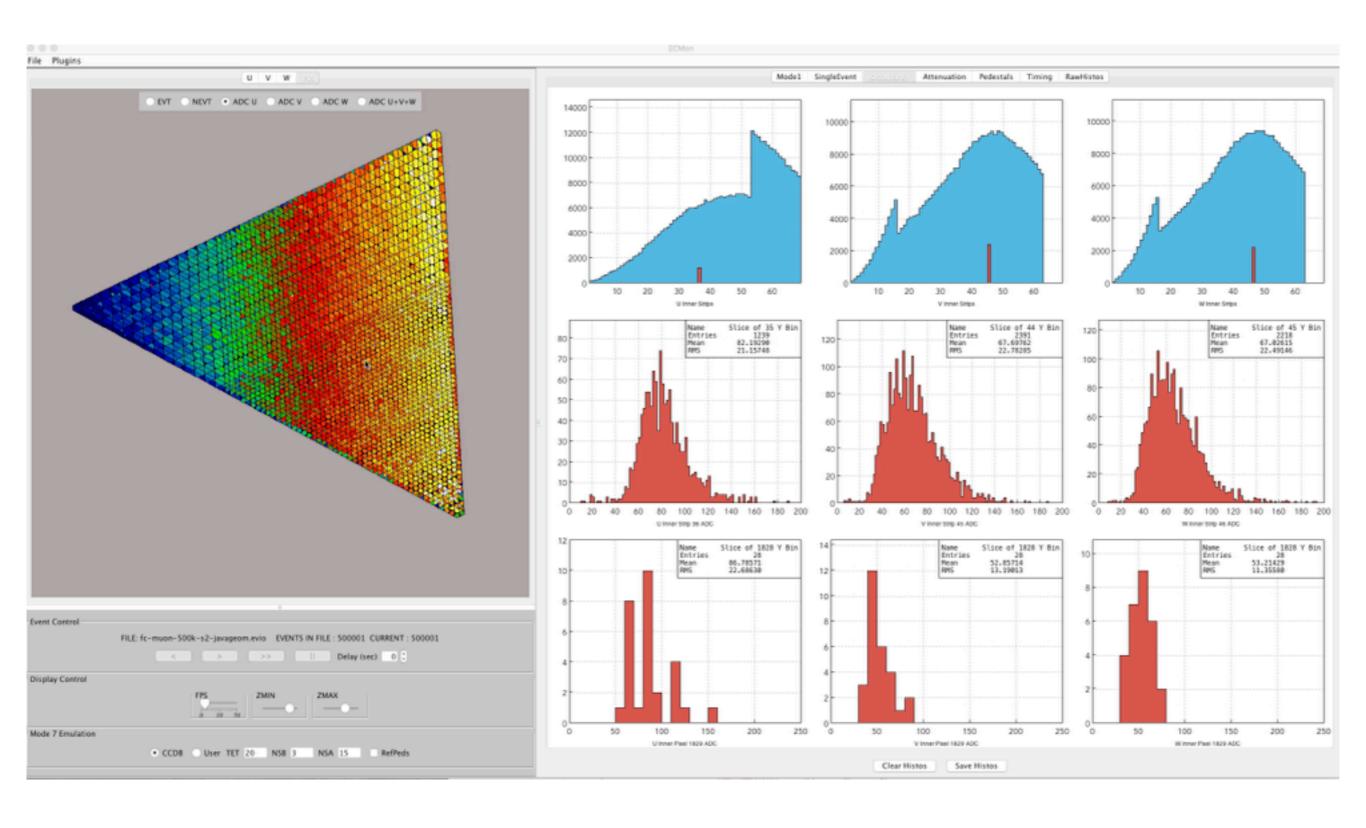

- Common framework for PCAL and EC.
- Pixels dynamically generated from geometry database.
- Mouse-over navigation of detector elements.
- Live updating of detector response and calibration results.


Monitoring

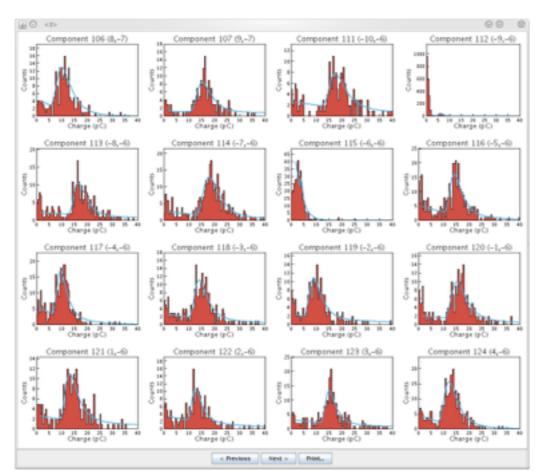

- Occupancy: strips, pixels, fADC and TDC data.
- fADC data: pulse shape, noise, fitter settings.
- Single event: visualize hits and showers.
- Pedestals: event-by-event, noisy channels.

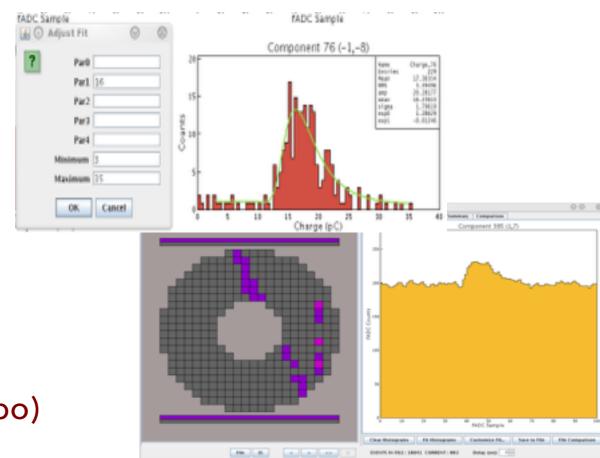
Calibration

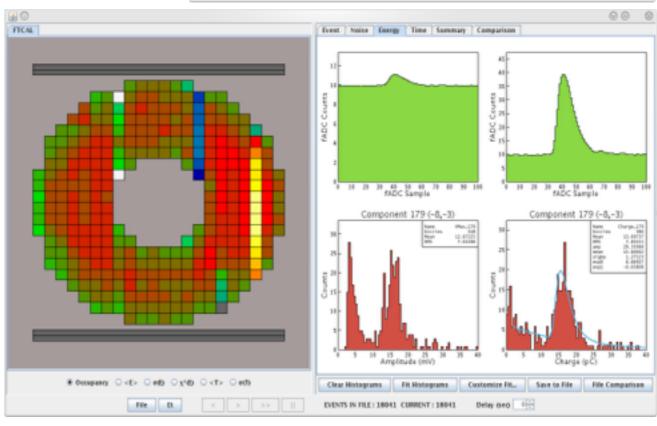
- GUI isolates single pixel cosmic muon hits (Dalitz).
- Optimization of pixel selection (statistics, geometry).
- Fits to pixel data: PMT gains and light attenuation.
- Validation using GEMC simulations.



Further Development


- Incorporate EPICS data (scalers and HV) for status monitoring.
- Energy cluster reconstruction and trigger debugging support.
- Energy calibration using physics data (e-, pi-zero and MIP pions).
- Timing calibration (offsets, time-walk).
- EC, PCAL relative alignment using cosmic muon pixel events.


Calibration EC



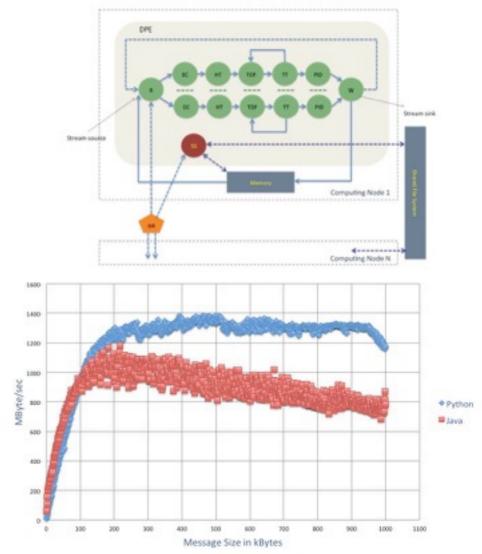
Calibration&Monitoring (FTCAL) (E. Fanchini)

- Modular software:
- project organized in subroutines (app) to be re-used
- Runs: online and offline data analysis
- *Selections:* Tabs and buttons to select analysis and variables to display
- *Comparison:* distributions compared with a reference or an offline run
- Summary panel: window displaying channel distributions and fits
- Refit panel: user function fit optimization
- Outputs: output files for offline analysis (txt, hipo)

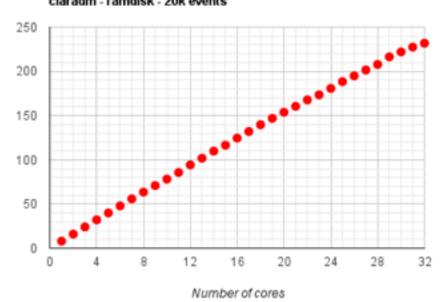
Reconstruction CLARA 4.3

Clas12 Reconstruction Application

√ xMsg CLARA service bug

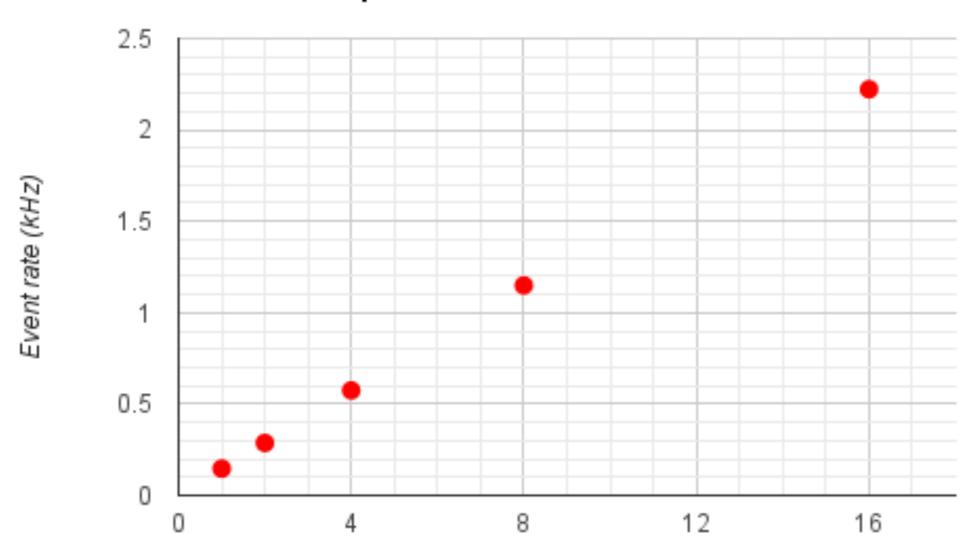

- general purpose public subscribe MPI
- utilizes zeroMQ socket libraries
- Sockets that carry messages across various transports
 - In-process
 - Inter-process
 - TCP
 - Multicast
- Sockets can be connected N-to-N with patterns
 - Fan-out
 - Pub-sub
 - Task distribution
 - · Request-reply
- Java, C++, Python bindings

✓ Reconstruction Framework

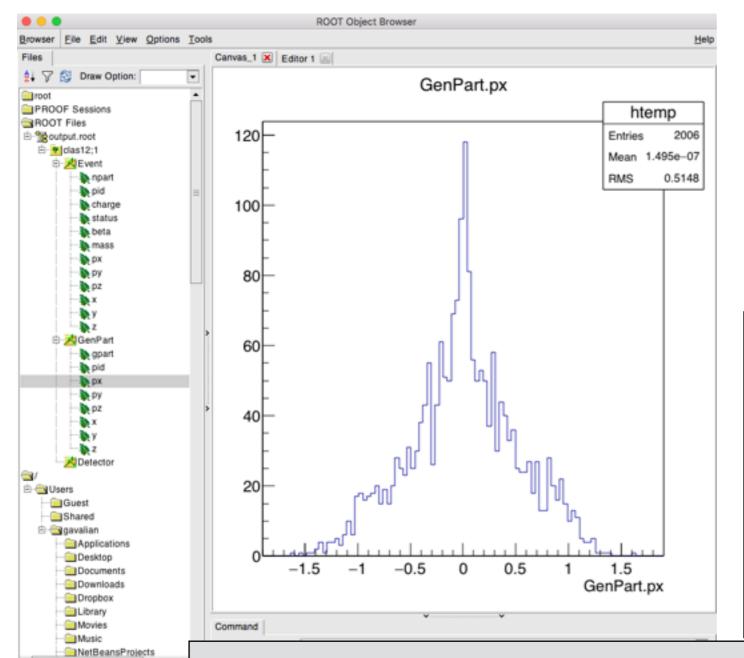

- reconstruction framework reads GEMC generation parameters.
- modular, runs as separate services.

✓ CLARA 4.3

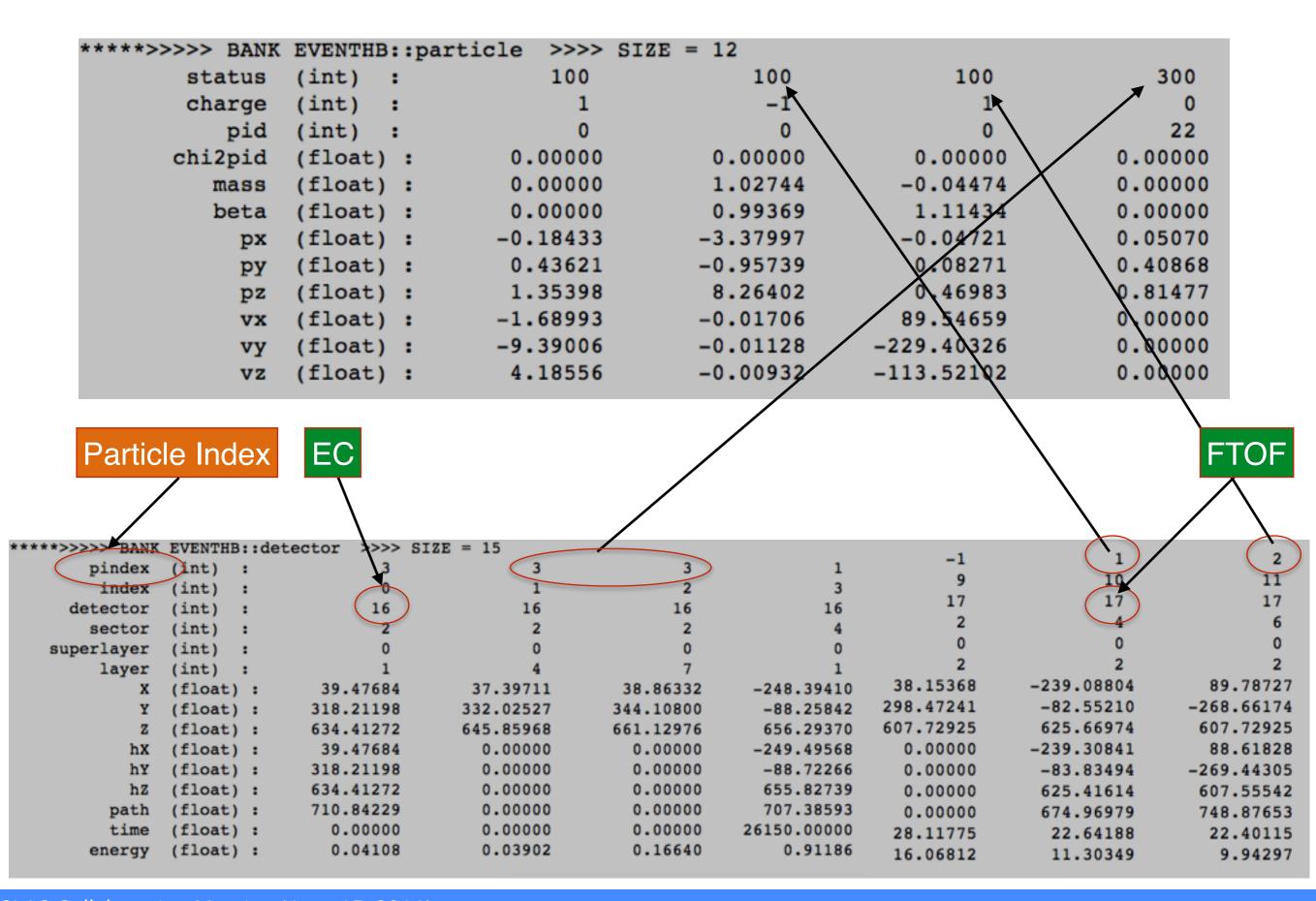
- CLARA switched from using cMsg to xMsg (version 4)
- easy transfer from 2.2 interface to 4.3
- tests run on CLARADM machine show 250 Hz event reconstruction


COAT scaling test (EC, FTOF, DCHB, DCTB, EB) - CLARA 4.3 claradm - ramdisk - 20k events

Event rate (Hz)


S. Mancilla

COAT multinode test (EC, FTOF, DCHB, DCTB, EB) -CLARA 4.3 - quark cluster - 64 local files - 5k events


Number of nodes (12 cores per node)

ROOT (migration to comfort zone)

- output to ROOT tree
- flat NT10 structures
- includes generated particles
- reconstructed particles
- combined detector responses
- git clone https://github.com/gavalian/evioRoot
- cd evioRoot
- scons
- ./bin/evio2root badfile.evio goodfile.root

Live Demo

Summary

Calibration:

- Unified framework for calibration seems to work for everyone.
- All detector systems are using unified tools (visualization and analysis).
- More work has to be done to unify data analysis

Data Formats and preservation.

- Transition to reading translation tables from DB is underway.
- ADC pulse parameters are being read from database.
- Raw bank decoders implemented for all detectors.
- Transitional data structures are implemented (HIPO) for data compression.
- Work is being done to optimize bank structures to save space.

Reconstruction:

- Reconstruction release 2.4 is ready to use.
- Includes all detectors (Forward, Central and FTCAL)
- CLARA Sand-Box available for CLAS12 reconstruction

Future Developments:

Conversion from EVIO to ROOT for final reconstruction files.

Analysis Software Framework