Extraction of Target and Double-Spin Asymmetries for $\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$ using CLAS EG4 data

Xiaochao Zheng University of Virginia June 16, 2016

Physics motivation, observables, formalism

EG4 run overview

Data analysis

Results and status of paper

Acknowledgment:

<u>EG4 spokespeople</u>: M. Battaglieri, R. De Vita, A. Deur, G. Dodge, M. Ripani, K. Slifer <u>EG4 students</u>: K. Adhikari (inclusive ND3), H. Kang (inclusive NH3), K. Li-Kovacs (target) <u>CAA (HS07-02) review committee</u>: D. Carman, P. Eugenio, C. Smith, M. Ungaro <u>Analysis note review committee</u>: G. Niculescu, R. De Vita, D. Schott <u>Ad-hoc review committee</u>: D. Sokhan, G. Niculescu, A. Celentano

Physics Motivation

Nucleon resonances form an important part of the strong interaction study:

Mostly non-perturbative, cannot use pQCD;

- Too light for lattice calculation;
- Must use effective theories or models:
 - Constituent Quark Model: resonance amplitudes, helicity structure... (not on interference terms)
 - Phenomenology models: MAID, SAID, DMT, JANR,

✤ May compare to Chiral Perturbation Theory (very low Q² only).

Spin observables (asymmetries) provide constraints on: spin-dependent amplitudes, interference terms...

Observables

EG4 Exclusive Channel Analysis

• Extracted At (A_{UL}) and Aet (A_{LL}) from EG4 NH3 data for:

$$\vec{e}\,\vec{p} \rightarrow e'\pi^+(n)$$

- Study dependence on Q^2 , W, ϕ^* and $\cos\theta^*$ (binned in 4 simultaneously);
- Ae (A_{LU}) and its sin¢ moment were extracted to check the beam HWP status for each run, and to provide the absolute beam helicity information;
- Previous/other analyses: EG1a (published), EG1b (in progress, see this morning's talk by P. Bosted);
- Our new results help to constrain models at low Q²;
- Can compare to real photon experiment, study transition from virtual to real photons;

EG4 Overview

- Ran in Feb-Apr.2006
- Main goal is to extract inclusive g₁ and form GDH sum at low Q²
- Polarized target installed at ~1m upstream of CLAS center
 - Mostly electron outbending; new Cherenkov in sector 6 reached 6° scattering angle; electron trigger in sector 6 only.
- DC not always on in all sectors (zero or very small acceptance in some \$\phi^*\$ bins)

EG4 Target Insert

EG4 Kinematic Coverage

The CAA originally included e'p(π^{0}), and ND3 e' π +(p) channel, but we no longer plan to analyze these because 1) poor acceptance for e'p(π^{0}); 2) the target spin was not flipped during the run.

EG4 Kinematic Coverage

eg1b coverage: (for comparison)

Lowest Eb: 1.6 GeV

Analysis Procedure for $\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$ using NH3 Data

- Beam polarization
- Event selection (electron and pion identification)
- Raster and momentum correction
- Dilution factor

Beam Polarization

Electron Selection

$\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$

EG4 had a new Cherenkov and electron trigger in sector 6 only; we used EC cuts, and developed "Osipenko cuts" for the new CC:

Pion Selection

 $\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$

Used TOF cut within +/- 1ns and mass=(0.01,0.3) GeV/c^2

$\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$

Raster and Momentum Corrections

Dilution from Unpolarized Material

- Dilution factor describes fraction of events from polarized protons in the target
- For this analysis, extracted dilution using NH3, empty, and carbon target data, for fixed packing fractions (length of pure NH3 beads)
- Value of packing fraction and its uncertainty determined by examining low Mx spectrum, and from dilution of the $e'\pi$ - channel
- 4D fit to the extracted dilution factor \rightarrow used in the analysis

X. Zheng, June 2016, CLAS JNIVERSITY of VIRGINIA

Extracting Asymmetries

- D: normalization from beam charge, DAQ livetime, etc.
- PbPt extracted from inclusive elastic events
- Dilution for elastic PbPt evaluated the same way as exclusive channel
- For Pt, divided elastic PbPt by Moller Pb

Systematic Uncertainties

$E_{\rm beam}$	Target	$\Delta A_{UL}/A_{UL}$	$\Delta A_{LL}/A_{LL}$	
(GeV)	(NH_3)	(syst)	(syst)	
3.0	top	7.0%	7.0%	
23	top	6.2%	6.3%	
2.3	short	9.0%	9.0%	
2.0	top	5.7%	5.8%	
1.3	top	5.7%	5.9%	
	bottom	5.5%	5.7%	
1.1	bottom	11.1%	11.2%	

- Dominated by the
 dilution factor/packing fraction
- ¹⁵N: (1-2)%
- Radiative correction: ±0.03 (absolute)
- All others negligible

Results

Asymmetry results available for A_{LL} , A_{UL} in:

- 42 Q^2 bins between 0.00453 and 6.45 (GeV/c)², spaced logarithmically
- 38 W bins between 1.1 and 2.21 GeV/ c^2 (0.03-GeV/ c^2)
- 30 ϕ^{\star} bins between 0° and 360°
- 20 $\cos\theta^*$ bins between -1 and 1

Not all bins have data, of course.

In the following slides, will show (data uncertainties are statistical only)

$$A_{LL}$$
 vs. W A_{LL} vs. ϕ^* A_{UL} vs. W A_{UL} vs. ϕ^*

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

20

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

bins Q2 Ω

23

Α_{UI} vs. φ*

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

 A_{UL} vs. ϕ^*

MAID2007 (solid) JANR(dashed) SAID(dash-dotted) DMT(dotted)

Summary

- Extracted asymmetry A_{LL} , A_{UL} for $\vec{e} \, \vec{p} \rightarrow e' \pi^+(n)$ from EG4's polarized NH3 data, down to Q²=0.0064 GeV/c².
- A_{LL} agree very well with phenomenology calculations
- A_{UL} agree well with calculations for W<1.5 GeV/c², but calculations can improve for W>1.5 GeV/c² throughout all Q² measured, down to Q²~0.02 (GeV/c)2
- Paper: collaboration-wide review is over, have accommodated all comments, working on improving the results figures and uploading all asymmetries to the CLAS database, almost ready to submit.
- This concludes the work of CAA HS-07-02
- Thank you!