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Overview

* Depolarization mechanisms from a charged
beam: 2012 eHD tests in Hall B

* eHD at the Upgraded Injector Test Facility (UITF)

e Relating running at eHD at UITF to running in
CLAS-12

* Achieving transverse polarization inside CLAS-12
Solenoid with a perfect diamagnet (MgB,)
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What is HDice?

* A frozen spin target — no need for large magnet.

 Target material consists solely of polarizable protons and deuterons
—> no dilution factor coming from the target material.

 Target material possesses a T1 (relaxation time) on the order of
years.

 Avery complicated target system requiring many steps in the
production of a single polarized target cell.
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¥ What experiments benefit?

* Has been used with photons in Hall B as part of the N*
program — g14 (Nov 2011 — May 2012).
* Next up: Transversely polarized frozen spin target for use with
electrons.
 Three (A-rated) proposals approved by PAC 39, rated as high
impact for Hall B by PAC41:
— SIDIS, C12-11-111, Marco Contalbrigo,... [A;C1]
— Dihadron production, PR-12-009, Harut Avakian,... [A;C1]

— DVCS, PR12-12-101, Latifa Elouadrhiri,... [A;C1]
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¥ What experiments benefit?

* Has been used with photons in Hall B as part of the N*
program — g14 (Nov 2011 — May 2012).
* Next up: Transversely polarized frozen spin target for use with
electrons.
 Three (A-rated) proposals approved by PAC 39, rated as high
impact for Hall B by PAC41:
— SIDIS, C12-11-111, Marco Contalbrigo,... [A;C1]
— Dihadron production, PR-12-009, Harut Avakian,... [A;C1]

— DVCS, PR12-12-101, Latifa Elouadrhiri,... [A;C1]

C1 —> scheduling requires successful demonstration of viable
performance in a subsequent eHD test runs




Jeff.e-r:son Lab
ice T

Why use HDice?

 These proposals require transversely polarized target.

* A conventional target with transverse polarization
requires use of “large” magnet around target (DNP)

— A magnetic field transverse to beam axis bends beam into
detectors (sheet of flame).

— Frozen spin target does not require large magnetic field around
target (smaller B * dl) == HDice

* Maintaining a transverse field inside of CLAS-12 Solenoid
can be possible using MgB, cylinder inside of IBC.



#5012 eHD TestinHallg

During g14, several eHD runs were conducted
opportunistically to study the effect of an electron beam on

the HDice target.

eHD test utilized existing Hall B Slow-Raster and target cell
designed for photons (a setup not optimized for an electron
beam).

Results showed a significant loss of polarization due to the
electron beam (1/e = 1/2 nA-day) m= Focus of current R&D effort
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h- 2012 eHD Testin HallB

* Depolarization attributed to three possible mechanisms:

1) Beam-induced chemical changes
- HD molecule ionizes and becomes highly reactive (HD*)
- A chain of reactions begins, producing atomic hydrogen:
=» Temperature spikes occur from “recombination flashes”
* Also seen in g14 photon runs (from e* e pairs) with low
frequently but with no apparent effect.
=>» Possible buildup of ortho-H, which could shorten T1 of
material
* Analysis of gas after 1nA-week in beam showed no
large increase of ortho-H, (measurements had
limited sensitivity)
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2012 eHD Test in Hall B

Depolarization attributed to three possible mechanisms:

2) Hyperfine mixing of unpaired electrons with H (or D) spins

- Electrons polarized by holding field possess spins opposite to H
- Hyperfine mixing dilutes H polarization

- Depolarization first occurs locally, depolarization spreads
- Temperature independent (function of B?)

Solution:

Use RF to align H (or D) spins with electron spins to prevent this
mixing.



h- 2012 eHD Testin HallB

* Depolarization attributed to three possible mechanisms:

3) Beam unpairs 1s molecular electrons in target material
- Electron(s) may be unpolarized (depends on temperature)
- If unpolarized (or has low polarization): flips, generating varying
field possessing a component at the nuclear Larmor frequencies
of Hand D
- Depolarization of local HD begins, spreads to rest of HD crystal
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Flipping, unpaired electron during 201
eHD test

e T(HD)~ 1.2K in 2012 test runs

D R e B S R e A e e A - slow raster
—Pe(0.30 tesla) - too long Alum cooling wires
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h- 2012 eHD Testin HallB

* Depolarization attributed to three possible mechanisms:

3) Beam unpairs 1s molecular electrons in target material
- Electron(s) may be unpolarized (depends on temperature)
- If unpolarized (or has low polarization): flips, generating varying
field possessing a component at the nuclear Larmor frequencies
of Hand D
- Depolarization of local HD begins, spreads to rest of HD crystal

Solution:
Suppress this effect through higher electron polarization (mitigation
of beam heating).
=>» Faster Raster, shorter Al wires, higher purity Al, smaller HD

ce I I Coppe{‘ target ring

C.D. Bass, et al., NIM A 737
(2014) 107-116
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Chamlael:

5-10 MeV; oE/E <103
Current: 100 pA-5 nA CW
100 nA Tune-mode

Size: 50 uym < Oyy < 150 um
Stability: within o
Beam Halo: < 10+
Polarization: > 70%
Helicity flip: 1-30 Hz

X,y
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eHD Tests in UITF

Electrons in HDice (5 cm) i ‘
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Electrons in HDice (5 cm)
100_ T IIIIIIII T IIIIIIII
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Beam transport through IBC at 10 MeV
is very different from 10 GeV!!!

at 10 GeV

Energy Loss (MeV)
S

Energy: 5-10 MeV; oE/E <103

Current: 100 pA-5 nACW
100 nA Tune-mode

Size: 50 uym < Oyy < 150 um
Stability: within o
Beam Halo: < 10+
Polarization: > 70%
Helicity flip: 1-30 Hz
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BOice Pencil beam into IBC at 10 GeV
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ice Pencil beam into IBC at <10 MeV

a closer view

40x thinner than g14
Radiation Baffle (0.4 um)

l’ 0.2 T Solenoid(s)

Radiation Baffle
/ \ node

Significant scattering off of Radiation Baffle
-and-
Focusing effects from solenoids



node

e UITF beam energy
tuned to 7.86 MeV

< shifts focusing node
to HD front face




e UITF beam energy
tuned to 7.86 MeV

< shifts focusing node
to HD front face

In addition to focusing
of the beam spot, there
is a focusing of beam
position



Pencil beam offset 14 mm at launch

(UITF) Pencil beam into IBC with 14 mm offset

<~ 13.6 mm offset at Radiqation Baffle,

Focused to 10mm at HD
from solenoid edge fodusing , \
=~ maximum offset | "

|
|
|
|
|
|
|
|
|
|
|
|
|

0.2 tesla transfer
solenoids

Radiation

Baffle

| 0.9 tesla main
" solenoid

max radial opening = 14.3 mm



Pencil beam offset 14 mm at launch

J)gf,f,e'rgon Lab
(UITF) Pencil beam into IBC with 14 mm offset

<~ 13.6 mm offset at Radigation Baffle,

Focused to 10mm at HD
from solenoid edge fodusing
=~ maximum offset |

Reduce target radius:

12.5 mm = 9.5 mm
[CLAS-12]

0.9 tesla main
Radiation
Baffle /.

max radial opening = 14.3 mm



BOice (UITE) Uniform

illumination ==
of target
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Upstream Face of Target

Target radius = 12.5 mm
Target length = 25 mm

e solenoid focusing and
multiple scattering are both
irrelevant

e beam uniformly illuminates
the full target cell



Expected heat load from 10 GeV on a CLAS-12 target

Depolarization mechanism: beam ionizes HD, breaking paired 1s
electrons

Unpaired electrons will be inert if they polarize in the 0.9 T IBC
field < polarization depends on temperature

HD temp depends on deposited beam power and

temp of Cu heat sink (cooling power of IBC refrigerator)

Temperature [K

20 30

Distance [mm]

pper
t sink




ice Expected heat load from 10 GeV on a CLAS-12 target

e HD cell for CLAS-12:
25 mm @ x 25 mm L

1800 x 3 mil @ Al (5N) wires
e NEW holding field=1.25T

max
Pe Ie O~HD THD

Copper

0.99831 2nA 26mW 245 mK
| heat sink

10 GeV Heating
2.6 MW <= 2 nA

1.3 mW <& 1nA

Temperature [K]

20 30

Distance [mm]




e UITF HD cell

e g14 IBC with 0.9 T holding field

e add heat to refrigerator to bring Cu
heat sink up to 10 GeV conditions

P

(S

0.99757

2 nA

Qo
1+1.6 mW

max
THD

186 mK

L ~sameP_,as10GeVand1.25T

Copper
heat sink
UITF Heating + Fake 10 GeV
1mW & 2nA
+1.6 MW heat

Temperature [K]

BLmW<E& 1nA
+ 0.8 mW heat

15 20 25

Distance [mm]
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For Reference: Flipping, unpaired electron
during 2012 eHD test

e T(HD)~ 1.2K in 2012 test runs

120 4ttt b - slow raster
—Pe(0.30 tesla) - too long Alum cooling wires
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- R e
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temperature (mK) and T, should be ~4000 hr
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Preparing for eHD

Cave l

e

Injector gun

UITF % Cryomodule

HDice IBC 30
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Cave 1

Preparing for eHD

ice
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++iceMaintaining a Transverse Holding Fie
Within the CLAS-12 Solenoid

Overview

Beamline
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Maintaining a Transverse holding Field
within the CLAS-12 Solenoid

e Need to cancel the field of the CLAS-12 Solenoid

 Wound electromagnet:
— Very difficult to build (uniformity)
— Must exactly oppose the field of CLAS-12 Solenoid
— Vulnerable to guenches, other failures (is active device)
— High <Z>

* Magnesium diBoride (MgB,)
— High T, superconducting material
— Can be fabricated into a shell around HD
— Is a passive device
— Can provide a uniform internal field
— <Z> =7 (minimal dE/dx)
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How would MgB, be used?

(Trapping a Transverse Field)

e Ramp up 1.25 T external magnet (transverse field) around nose of IBC
* Cool MgB, inside of IBCto 4 K (T, =39 K)

* Load polarized HD cell into IBC

* Lower external field

* The perfect diamagnetism of MgB, allows for the spontaneous generation of
currents, maintaining the original internal field

4 K

80K °°
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How would MgB, be used?

(Cancelling the CLAS-12 Solenoid Field)

IBC rotated into horizontal position
and moved into CLAS-12

CLAS-12 Solenoid ramped up
=» currents again arise in MgB,,

maintaining original (transverse)
field

These complex currents can/will be 80 K
much more intricate than could be B I
achieved with an electromagnet = - e > T H } T
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Summary of Prototype Tests in Ferrara **

* Repeatable results indicate that MgB, shell can trap a
transverse field of =1 Tesla.

* MgB, can maintain this internal field for weeks with
negligible droop (0.0015 T over 1 month)

* MgB, shell can survive magnet quenches
— Subjected to several quenches (flux jumps)
— MgB, survived with no change in performance -

di Fisica Nucleare
Sezione di Ferrara

MgB, shell held in MgB, prototype:
14 K cryocooler 40 mm @
between poles of a 86 mm long

1 tesla dipole 2 mm wall
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Summary

* HDice has been successfully used in the past with photon
beams but its future lies in its use with electrons (eHD).

— Three “high impact” proposals to use HDice with electrons
in CLAS-12.

* Charged particle beams present a new challenge for HDice

— Focus of current efforts

— UITF eHD tests will allow for a study of the effects of an
electron beam on the target as well as how to abate them.

e Cancelling the CLAS-12 Solenoid may be accomplished using a
MgB, shell.

— Second test of MgB, prototype: trapping a transverse
dipole field and cancelling external solenoid field
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Upstream Face of Target

Downstream Face of Target

15 20
x [mm]

Downstregam Face of Target, abs(|nitY)<0.5

Entringu¥BI5!

e back half of a 25 mm long
target cannot be uniformly
illuminated with beam, due
to multiple scattering

& concentrates heat and
radiation damage
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Rastered beam profiles on 12.5 mm long target

el s o e compromise on 7 target
length to distribute beam
quasi-uniformly

& most of the 12.5 mm
target length can be filled
with beam
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eHD Luminosity

dN/dt [s7! in a perfect detector] ® 1/0; [cm™2]
(0.2 x1033) * T,;5(cm) * I (nA)

for 2.5 cm long celland |, =2 nA =» 1033
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”ice Room for future improvements in Al thermal conductivity

HDice data: (e = =)
high 6N (99.9999%) Al wire

curves: 6N, 5N, 4N

Thermal Conductivities for pure Aluminum could triple the target length
A.L. Woodcraft, Cryogenics 45 (2005) 626 .. »
0~ [ HDice data: thermal conductivity
- (A d 5N 1 6400 | of 5N Al wire at 4K
L - s i g
| £ 5600 . :
10t 3 - °
E > 4800 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr .
P | | § 4000 - .
S 100 A XA '§ 3000 Electron ’
~ E ’ ] 8 “mean-free """""""""""""""""""""""""""" |
~ ?2012 eHD © 2400 ~0p8t0h12.. """"""""" """""""""""""""""""""""""""" .
, Test Cells £ e f
107 - e g 1600 \ ]
C i e o |
= : f
X 800 :L 7
10" R A
0.0000 0.0020 0.0040
1 10 100 wire OD (inch)
T(K)

eHD at UITF 44
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UITF vs Hall B

UITF Hall B
E. =10 GeV

E.=7.86 MeV
Beam diameter = 17 mm, with tails Beam diameter = 23 mm, no tails
HD diameter = 25 mm

(maximum size)
HD diameter = 19 mm HD length = 25 mm
(1 mm clearance at 3 o)
HD length = 12.5 mm
(max for quasi-uniform pwr)

B A L A A B b L b b b b b ALk b b A 5.3
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UITF vs Hall B
UITF Hall B
E.=7.86 MeV E. =10 GeV
Beam diameter = 17 mm, with tails Beam diameter = 23 mm, no tails
HD diameter = 19 mm HD diameter = 25 mm

HD length = 12.5 mm HD length = 25 mm

N N N N Y Y YR YT aYT
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UITF vs Hall B
UITF Hall B
E.=7.86 MeV E. =10 GeV
Beam diameter = 17 mm, with tails Beam diameter = 23 mm, no tails
HD diameter = 19 mm HD diameter = 25 mm

HD length = 12.5 mm HD length = 25 mm

N N N N Y Y YR YT aYT




