

Collaborators

<u>Jefferson Lab</u> (HDice – Physics Div)

G. Dezern, C. Hanretty, T. Kageya, M. Lowry, A. M. Sandorfi, X. Wei

<u>Jefferson Lab</u> (UITF – Accelerator Div) H. Areti, J. Grames, J. Gubeli, M. Poelker, W. Akers

Universita di Roma Tor Vergata and INFN-Sezione di Roma2 (Gas analysis) A. D'Angelo

> James Madison University (Gas distillation) C.S. Whisnant

<u>Universita di Ferrara and INFN di Ferrara</u> (MgB₂ magnet) M. Contalbrigo, P. Lenisa, M. Statera, G. Ciullo, L. Barion

Overview

- Depolarization mechanisms from a charged beam: 2012 eHD tests in Hall B
- eHD at the Upgraded Injector Test Facility (UITF)
- Relating running at eHD at UITF to running in CLAS-12
- Achieving transverse polarization inside CLAS-12
 Solenoid with a perfect diamagnet (MgB₂)

What is HDice?

- A frozen spin target \longrightarrow no need for large magnet.
- Target material consists solely of polarizable protons and deuterons
 —> no dilution factor coming from the target material.
- Target material possesses a T1 (relaxation time) on the order of years.
- A very complicated target system requiring many steps in the production of a single polarized target cell.

What experiments benefit?

- Has been used with photons in Hall B as part of the N* program → g14 (Nov 2011 – May 2012).
- Next up: Transversely polarized frozen spin target for use with electrons.
- Three (A-rated) proposals approved by PAC 39, rated as high impact for Hall B by PAC41:
 - SIDIS, C12-11-111, Marco Contalbrigo,... [A;C1]
 - Dihadron production, PR-12-009, Harut Avakian,... [A;C1]
 - DVCS, PR12-12-101, Latifa Elouadrhiri,... [A;C1]

What experiments benefit?

- Has been used with photons in Hall B as part of the N* program → g14 (Nov 2011 – May 2012).
- Next up: Transversely polarized frozen spin target for use with electrons.
- Three (A-rated) proposals approved by PAC 39, rated as high impact for Hall B by PAC41:
 - SIDIS, C12-11-111, Marco Contalbrigo,... [A;C1]
 - Dihadron production, PR-12-009, Harut Avakian,... [A;C1]
 - DVCS, PR12-12-101, Latifa Elouadrhiri,... [A;C1]

C1 → scheduling requires successful demonstration of viable performance in a subsequent eHD test runs

Why use HDice?

- These proposals require transversely polarized target.
- A conventional target with transverse polarization requires use of "large" magnet around target (DNP)
 - A magnetic field transverse to beam axis bends beam into detectors (sheet of flame).
- Maintaining a transverse field inside of CLAS-12 Solenoid can be possible using MgB₂ cylinder inside of IBC.

- During g14, several eHD runs were conducted opportunistically to study the effect of an electron beam on the HDice target.
- eHD test utilized existing Hall B Slow-Raster and target cell designed for photons (a setup not optimized for an electron beam).
- Results showed a significant loss of polarization due to the electron beam (1/e ≈ 1/2 nA-day) → Focus of current R&D effort

- Depolarization attributed to three possible mechanisms:
- 1) Beam-induced chemical changes
 - HD molecule ionizes and becomes highly reactive (HD⁺)
 - A chain of reactions begins, producing atomic hydrogen:
 - ➔ Temperature spikes occur from "recombination flashes"
 - Also seen in g14 photon runs (from e⁺ e⁻ pairs) with low frequently but with no apparent effect.
 - Possible buildup of ortho-H₂ which could shorten T1 of material
 - Analysis of gas after 1nA-week in beam showed no large increase of ortho-H₂ (measurements had limited sensitivity)

- Depolarization attributed to three possible mechanisms:
- 2) Hyperfine mixing of unpaired electrons with H (or D) spins
 - Electrons polarized by holding field possess spins opposite to H
 - Hyperfine mixing dilutes H polarization
 - Depolarization first occurs locally, depolarization spreads
 - Temperature independent (function of B⁻²)

Solution:

Use RF to align H (or D) spins with electron spins to prevent this mixing.

- Depolarization attributed to three possible mechanisms:
- 3) Beam unpairs 1s molecular electrons in target material
 - Electron(s) may be unpolarized (depends on temperature)
 - If unpolarized (or has low polarization): flips, generating varying field possessing a component at the nuclear Larmor frequencies of H and D
 - Depolarization of local HD begins, spreads to rest of HD crystal

Flipping, unpaired electron during 2012 eHD test

- Depolarization attributed to three possible mechanisms:
- 3) Beam unpairs 1s molecular electrons in target material
 - Electron(s) may be unpolarized (depends on temperature)
 - If unpolarized (or has low polarization): flips, generating varying field possessing a component at the nuclear Larmor frequencies of H and D
 - Depolarization of local HD begins, spreads to rest of HD crystal

Solution:

Suppress this effect through higher electron polarization (mitigation of beam heating).

eHD Tests in UITF

eHD Tests in UITF

eHD Tests in UITF

Pencil beam into IBC at 10 GeV

Pencil beam into IBC at <10 MeV

Pencil beam into IBC at <10 MeV

..... a closer view

Jefferson Lab (UITF) Pencil beam into IBC with tuned beam energy

Jefferson Lab (UITF) Pencil beam into IBC with tuned beam energy

Jefferson Lab

Pencil beam offset 14 mm at launch

⇔ 13.6 mm offset at Radiation Baffle, from solenoid edge focusing ≈ maximum offset Focused to 10mm at HD

Reduce target radius: 12.5 mm → 9.5 mm [CLAS-12] [UITF]

0.9 tesla main solenoid

Radiation Baffle

max radial opening = 14.3 mm

(UITF) Uniform rastered beam into IBC

Rastered 10 GeV beam profiles CLAS-12 target

Entries 3129997

70C

60C 50C 40C

30C 20C

100

Entries 249740

Target radius = 12.5 mm Target length = 25 mm

 solenoid focusing and multiple scattering are both irrelevant

 beam uniformly illuminates the full target cell

Expected heat load from 10 GeV on a CLAS-12 target

- Depolarization mechanism: beam ionizes HD, breaking paired 1s electrons
- HD temp depends on deposited beam power and temp of Cu heat sink (cooling power of IBC refrigerator)

pper t sink

Expected heat load from 10 GeV on a CLAS-12 target

- HD cell for CLAS-12: 25 mm Ø x 25 mm L 1800 x 3 mil Ø Al (5N) wires
- NEW holding field = 1.25 T

T_{HD} max P_{e} Q_{HD} I_{e} 0.99831 2 nA 2.6 mW

245 mK 0.99993 1 nA 1.3 mW 168 mK 🔨 HD 0.30

[emperature [K]

- **UITF** HD cell
- g14 IBC with 0.9 T holding field
- add heat to refrigerator to bring Cu heat sink up to 10 GeV conditions

 \sim same P_e as 10 GeV and 1.25 T

For Reference: Flipping, unpaired electron during 2012 eHD test

Preparing for eHD: Cave 1

Preparing for eHD: Cave 2

Jefferson Lab

Maintaining a Transverse Holding Field Within the CLAS-12 Solenoid

Maintaining a Transverse holding Field within the CLAS-12 Solenoid

- Need to cancel the field of the CLAS-12 Solenoid
- Wound electromagnet:
 - Very difficult to build (uniformity)
 - Must exactly oppose the field of CLAS-12 Solenoid
 - Vulnerable to quenches, other failures (is active device)
 - High <Z>
- Magnesium diBoride (MgB₂)
 - High T_c , superconducting material
 - Can be fabricated into a shell around HD
 - Is a passive device
 - Can provide a uniform internal field
 - <Z> ≈ 7 (minimal dE/dx)

How would MgB₂ be used? (Trapping a Transverse Field)

- Ramp up 1.25 T external magnet (transverse field) around nose of IBC
- Cool MgB₂ inside of IBC to 4 K ($T_c = 39$ K)
- Load polarized HD cell into IBC
- Lower external field
- The perfect diamagnetism of MgB₂ allows for the spontaneous generation of currents, maintaining the original internal field

How would MgB₂ be used? (Cancelling the CLAS-12 Solenoid Field)

- IBC rotated into horizontal position and moved into CLAS-12
- CLAS-12 Solenoid ramped up
 → currents again arise in MgB₂, maintaining original (transverse) field
- These complex currents can/will be much more intricate than could be achieved with an electromagnet

Summary of Prototype Tests in Ferrara

- Repeatable results indicate that MgB₂ shell can trap a transverse field of ≈1 Tesla.
- MgB₂ can maintain this internal field for weeks with negligible droop (0.0015 T over 1 month)
- MgB₂ shell can survive magnet quenches
 - Subjected to several quenches (flux jumps)
 - MgB₂ survived with no change in performance

MgB₂ shell held in 14 K cryocooler between poles of a 1 tesla dipole

MgB₂ prototype: 40 mm Ø 86 mm long 2 mm wall

Summary

- HDice has been successfully used in the past with photon beams but its future lies in its use with electrons (eHD).
 - Three "high impact" proposals to use HDice with electrons in CLAS-12.
- Charged particle beams present a new challenge for HDice
 - Focus of current efforts
 - UITF eHD tests will allow for a study of the effects of an electron beam on the target as well as how to abate them.
- Cancelling the CLAS-12 Solenoid may be accomplished using a MgB₂ shell.
 - Second test of MgB₂ prototype: trapping a transverse dipole field <u>and</u> cancelling external solenoid field

END

Rastered beam profiles on 25 mm long target

Rastered beam profiles on 12.5 mm long target

eHD Luminosity

 \mathcal{L} [cm⁻² s⁻¹] = dN/dt [s⁻¹ in a perfect detector] • 1/ σ_T [cm⁻²]

=
$$(0.2 \times 10^{33}) \bullet T_{HD}(cm) \bullet I_{e}(nA)$$

for 2.5 cm long cell and $I_e = 2 \text{ nA} \rightarrow 10^{33}$

Dice Room for future improvements in Al thermal conductivity

HDice data: (•••)

UITF vs Hall B

<u>UITF</u>

 $E_e = 7.86 \text{ MeV}$ Beam diameter = 17 mm, with tails (maximum size) HD diameter = 19 mm (1 mm clearance at 3 σ) HD length = 12.5 mm (max for quasi-uniform pwr)

<u>Hall B</u>

E_e = 10 GeV Beam diameter = 23 mm, no tails HD diameter = 25 mm HD length = 25 mm

UITF vs Hall B

<u>UITF</u>

E_e = 7.86 MeV Beam diameter = 17 mm, with tails HD diameter = 19 mm <u>HD</u> length = 12.5 mm

<u>Hall B</u>

E_e = 10 GeV Beam diameter = 23 mm, no tails HD diameter = 25 mm <u>HD</u> length = 25 mm

0.13 mW/cc (**1** σ, 1 σ)

UITF vs Hall B

<u>UITF</u>

E_e = 7.86 MeV Beam diameter = 17 mm, with tails HD diameter = 19 mm HD length = 12.5 mm

<u>Hall B</u>

E_e = 10 GeV Beam diameter = 23 mm, no tails HD diameter = 25 mm <u>HD</u> length = 25 mm

0.13 mW/cc (**1** σ, 1 σ)