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Purpose and Status

• Purpose is to demonstrate details of analysis and receive feedback

• Emphasis on procedures

• Currently writing draft of paper and analysis note
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g12 Experiment
• Analysis of �p ! pK+K�

and �p ! p⇡+⇡�
using data collected from

the g12 experiment

• All final state particles were required to be detected

• Photoproduction experiment on proton target with luminosity 68pb

�1

• Photon beam was circularly polarized (max polarization ⇡ 80%) with an

energy range 1.1� 5.5 GeV

• Proton target was not polarized
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Event Selection

• No detached vertices for either reaction

• Reconstructed vertex required to lie

inside target cylinder

� r < 2.0 cm

� �110 < z < �70 cm
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Event Selection

• No detached vertices for either reaction

• Reconstructed vertex required to lie
inside target cylinder

� r < 2.0 cm

� �110 < z < �70 cm

• Vertex time as determined by RF and TOF
were required to be 1 ns from each other
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Event Selection
• Multiple photons were sometimes tagged

• Several algorithms were considered

� Select random photon

� Select more energetic photon

� Select photon with larger

probability from kinematic fitting

� Remove events with multiple

tagged photons

• Analysis simply removed events with

multiple tagged photons

6/29



g12 Corrections Applied

• Beam Energy Corrections

• Energy Loss

• Momentum Corrections

• Kinematic Fitting

�p ! p⇡+⇡�
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Invariant Mass Plots

8/29



Invariant Mass Plots
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Invariant Mass Plots
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Beam-Helicity Asymmetry
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• In a given kinematic bin, ⌧ , the beam-helicity asymmetry is defined as

I�(⌧) =
1

P�(⌧)

�+

(⌧)� ��
(⌧)

�+

(⌧) + ��
(⌧)

• It is measured experimentally as

I�
exp

(⌧) =
Y +

(⌧)
↵+ � Y �

(⌧)
↵�

N+
(⌧)

↵+ +

N�
(⌧)

↵�



Beam-Helicity Asymmetry
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I�
exp

(⌧) =
Y +

(⌧)
↵+ � Y �

(⌧)
↵�

N+
(⌧)

↵+ +

N�
(⌧)

↵�

• N±
(⌧) number of events in ⌧ coming from a ± photon helicity

• ↵±
=

1

2

(1± āc)

• āc =

N+
⇡ �N�

⇡

N+
⇡ +N�

⇡
= 0.0028± 0.0008 is the beam-charge asymmetry

� Beam-charge asymmetry was measured using the reactions �p ! p⇡0

and �p ! n⇡+



Beam-Helicity Asymmetry

11/29

I�
exp

(⌧) =
Y +

(⌧)
↵+ � Y �

(⌧)
↵�

N+
(⌧)

↵+ + N�
(⌧)

↵�

Y ±(⌧) =

N±
(⌧)X

i=1

1

P±
�,i

P� =
E�(Ee +

Ee�E�

3

)

E2

e + (Ee � E�)2 � 2

3

Ee(Ee � E�)
Pe

Each event is weighted by
inverse polarization

Electron beam polarization measured 
by Moller polarimeter



Beam-Helicity Asymmetry

• Beam-Helicity asymmetry was 
measured with respect to the angle 
between two predefined planes

• Figure on right defines the “Meson-
Meson Plane Configuration”
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Beam-Helicity Asymmetry
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• Comparison of I� between

kaon and pion channels in Meson-Meson

Plane Configuration as function of �

• Kaon channel has larger

asymmetry amplitude and dominated

by sin(2�)
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• Fourier fit is to

I�(�) =
3X

n=1

cn sin(n�)

• Coe�cients stopped at 3
after significance testing

� Hypothesis Tests

� LASSO
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• Investigated Fourier coe�cients as

function of di↵erent kinematics

I�⇡ (�;W ) =

3X

n=1

cn(W ) sin(n�)

• Pion asymmetry dominated by sin(2�)
for most of the energy range
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function of di↵erent kinematics

I�K(�;W ) =
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cn(W ) sin(n�)

• Kaon asymmetry dominated by

sin(�) for most of the energy range



Beam-Helicity Asymmetry
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• Investigated Fourier coe�cients as
function of di↵erent kinematics

I�K(�;M(K+K�)) =

3X

n=1

cn(M) sin(n�)

• Overall amplitude decreases asM(K+K�)
increases
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Interesting peak
but probably

due to threshold effects
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Beam-Helicity Asymmetry
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• Investigated Fourier coe�cients as
function of di↵erent kinematics

I�K(�;M(pK�)) =

3X

n=1

cn(M) sin(n�)

• Overall amplitude increases asM(pK�)
increases
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• Investigated Fourier coe�cients as
function of di↵erent kinematics

I�K(�;M(pK+)) =

3X

n=1

cn(M) sin(n�)

• Overall amplitude increases asM(pK+)
increases
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• Investigated Fourier coe�cients as

function of di↵erent kinematics

I�K(�; t�!K+
) =

3X

n=1

cn(�t) sin(n�)
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• Investigated Fourier coe�cients as

function of di↵erent kinematics

I�K(�; t�!K+K�
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• Investigated Fourier coe�cients as

function of di↵erent kinematics

• Thorough study

• Repeated for other plane

configurations



Beam-Helicity Asymmetry

• Figure on right defines the “Neutral 
Baryon Plane Configuration”
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Beam-Helicity Asymmetry

• Figure on right defines the “Positive 
Baryon Plane Configuration”
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Beam-Helicity Asymmetry

• Apparent agreement among leading 
coefficients for different plane/angle 
configurations across all kinematics 
(up to sign of the permutation)

• Also true for pion channel

• Not true for other coefficients
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Beam-Helicity Asymmetry
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Beam-Helicity Asymmetry

• Apparent agreement among leading 
coefficients for different plane/angle 
configurations across all kinematics 
(up to sign of the permutation)

• Also true for pion channel

• Not true for other coefficients
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Beam-Helicity Asymmetry
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Statistical Uncertainties
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• Statistical uncertainties treated each event following a Bernoulli-type dis-

tribution, weighted by inverse polarization and adjusted by the beam-

charge asymmetry

• For N Bernoulli trials (trial can yield either ±1), the standard error on

the average number of successes (defining +1 to be a success) is given by

�

✓
N(+1)

N

◆
=

2

p
N(+1)N(�1)

N
3
2



Statistical Uncertainties
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• In this study, N(±1) is replaced by

N±

↵± =

¯N±

• Due to each event weighted by the inverse polarization, the standard error

is multiplied by the root-mean-square of the inverse polarization over all

events

• The standard error on I� is given by

�stat(I
�
) =

2

p
¯N+

¯N�

¯N
3
2

⌧
1

P 2

� 1
2



Systematic Uncertainties
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• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• The cuts were varied by 10% in each direction

• Radial Vertex Cut

� r < 2.0 cm ! r < 2.2 cm

� r < 2.0 cm ! r < 1.8 cm
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• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• The cuts were varied by 10% in each direction

• Longitudinal Vertex Cut

� |z � 90| < 20.0 cm ! |z � 90| < 22.0 cm

� |z � 90| < 20.0 cm ! |z � 90| < 18.0 cm



Systematic Uncertainties

26/29

• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• The cuts were varied by 10% in each direction

• Timing Cut

� |�t| < 1.0 ns ! |�t| < 1.1 ns

� |�t| < 1.0 ns ! |�t| < 0.9 ns



Systematic Uncertainties

26/29

• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• Multiple Photon Cut

� Multiple photon cut ! no multiple photon cut



Systematic Uncertainties
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• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• Binning

� 16 � bins ! 17 � bins

� 16 � bins ! 15 � bins



Systematic Uncertainties
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• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• The systematic uncertainty from an arbitrary source is estimated by

�
sys

=

vuuuuuuut

X

i

✓
I�
nom

(�i)� I�
alt

(�i)

�I�
nom

(�i)

◆
2

X

i

✓
1

�I�
nom

(�i)

◆
2



Systematic Uncertainties
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• The systematic uncertainties were estimated by varying each cut used in

the event selection process

• The total systematic uncertainty was obtained by adding the uncertainties

from the di↵erent sources in quadrature

�
sys,tot

=

sX

src

�2
sys,src



Systematic Uncertainties

• Systematic uncertainties for pion 
channel in the meson-meson plane 
configuration
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Systematic Uncertainties

• Systematic uncertainties for kaon 
channel in the meson-meson plane 
configuration
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Systematic Uncertainties

• Systematic uncertainties for kaon 
channel in the neutral baryon plane 
configuration
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Systematic Uncertainties

• Systematic uncertainties for kaon 
channel in the positive baryon plane 
configuration

27/29



Systematic Uncertainties
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• Compared to I�rms, the systematic uncertainty is ⇡ 10%

I�rms =

vuuuuuuut

X

i

✓
I�(�i)

�I�(�i)

◆2

X

i

✓
1

�I�(�i)

◆2



Conclusions
• Thorough study on the beam-helicity asymmetry

• Its angular dependence was studied

• Fourier coefficients studied as functions of key kinematic variables

• Procedures, results, and uncertainty estimation presented

• Systematic uncertainties on fiducial cuts and TOF knockouts to be 
conducted
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