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QCD: The Unifying Challenge
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Understanding QCD means to chart and compute this
distribution of matter and energy within hadrons
and nuclei; together with the complementary
process of fragmentation functions

but a priori have no idea what QCD can produce

Solving QCD explain how massless gluons and
light quarks form hadrons & thereby explain the
origin of ∼98% of the mass in the visible universe

must understand the emergent phenomena of
confinement and dynamical chiral symmetry breaking
best promise for progress is a strong interplay between experiment and theory

In the DSEs an understanding of QCD is gained by exposing the properties
and behaviour of its dressed propagators, dressed vertices and interaction
kernels
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
must implement a symmetry preserving truncation

Most important DSE is QCD’s gap equation =⇒ dressed quark propagator

−1
=
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+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

S(p) has correct perturbative limit

M(p2) exhibits dynamical mass
generation⇐⇒ DCSB

S(p) has complex conjugate poles
no real mass shell⇐⇒ confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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QCDs Dyson-Schwinger Equations

ETC!
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DSEs – A closer look
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+

Not possible to solve tower of equations – start with gap equation
need ansatz for dressed gluon propagator × dressed quark-gluon vertex
truncation must preserve symmetries, e.g., electromagnetic current, chiral

Dµν(p) =

(
δµν − qµqν

q2

)
∆(q2) + ξ
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q4

Γa,µgqq(p
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2

∑12

i=1
Λµi fi(p

′2, p2, q2)
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2
[ΓµL(p′, p) + ΓµT (p′, p)]
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Therefore both gluons and quarks posses dynamically generated masses

QCD dynamically generates its own infrared cutoffs

A. C. Aguilar et al,
Phys. Rev. D81, 034003 (2010).
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Rainbow Ladder Truncation
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The most common symmetry preserving truncation is rainbow-ladder

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

Need model for αeff(k
2) – must agree with perturbative QCD for large k2

Maris–Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

αeff(k
2) = πD

ω6 k
4 e−k

2/ω2

+ 24π
25

(
1− e−k2/µ2

)
ln−1

[
e2− 1+

(
1 + k2/Λ2

QCD
)2]

Satisfies vector & axial-vector WTIs

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

[em current conservation]

qµ Γµ,i5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S
−1(p)

+ 2mΓiπ(p′, p) [DCSB]

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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The most common symmetry preserving truncation is rainbow-ladder

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

Need model for αeff(k
2) – must agree with perturbative QCD for large k2

Qin–Chang model is a modern update [PRC 84, 042202 (2011)]
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q (p′)− S−1

q (p)
]

[em current conservation]

qµ Γµ,i5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S
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S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)
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Beyond Rainbow Ladder Truncation
Include “anomalous chromomagnetic” term in quark-gluon vertex

1
4π g

2Dµν(`) Γν(p′, p) → αeff(`)D
free
µν (`) [γν + iσµνqν τ5(p′, p) + . . .]

In chiral limit anomalous chromomagnetic term can only appear through
DCSB – since it is not chirally symmetric

Expect strong gluon dressing to produce
non-trivial structure for a dressed quark

recall dressing produces – from massless
quark – a M ∼ 400 MeV dressed quark
dressed quarks likely contain large
amounts of orbital angular momentum

Large anomalous chromomagnetic
moment in the quark-gluon vertex –
produces a large quark anomalous
electromagnetic moment

dressed quarks are not point particles!

[L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]
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The Pion in QCD
Today the pion is understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the
Goldstone mode associated with DCSB in QCD

In QFT a two-body bound state (e.g. a pion or rho) is
described by the BSE:

Γ = Γ K K = + + . . .

For the pion the solution has the general form

Γπ(p, k) = γ5

[
Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)

]

the kernel must yield a solution that encapsulates the consequences of dynamical
chiral symmetry breaking, e.g., in chiral limit mπ = 0 & also m2

π ∝ mu +md

DSCB implies, e.g., a Goldberger-Treiman-like relation for the pion:

fπ Eπ(p = 0, k2) = B(k2) recall S(p)−1 = /pA(k2) +B(k2)

DCSB implies intimate connection between 1-body and 2-body problems
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Light-Front Wave Functions
In equal-time quantization a hadron wave
function is a frame dependent concept

boost operators are dynamical, that is, they
are interaction dependent

In high energy scattering experiments
particles move at near speed of light

natural to quantize a theory at equal
light-front time: τ = (t+ z)/

√
2

Light-front quantization =⇒ light-front WFs; many remarkable properties:
frame-independent; probability interpretation – as close as QFT gets to QM
boosts are kinematical – not dynamical

With the LFWFs many observables can be straightforwardly determined – so
far we have focused on the parton distribution amplitudes (PDAs):

ϕ(x) =

∫
d2~k⊥ ψ(x,~k⊥)
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2
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P
D
A

P
D
A

P
D
A

GPDs

P
D
A

GPDs

PDAs enter numerous hard exclusive scattering processes

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ

table of contents ECT* 11–15 April 2016 10 / 29



Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

The pion’s PDA is defined by

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]

S(k) Γπ(k, p)S(k − p) is the pion’s Bethe-Salpeter wave function
in the non-relativistic limit it corresponds to the Schrodinger wave function

ϕπ(x): is the axial-vector projection of the pion’s Bethe-Salpeter wave
function onto the light-front [at twist-2 also pseudoscalar projection]

Pion PDA is an essentially nonperturbative quantity whose asymptotic form
is known; in this regime governs, e.g., Q2 dependence of pion form factor

Q2 Fπ(Q2)
Q2→∞−→ 16π f2

π αs(Q
2) ⇐⇒ ϕasy

π (x) = 6x (1− x)
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QCD Evolution & Asymptotic PDA
ERBL (Q2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

µ
d

dµ
ϕ(x, µ) =

∫ 1

0

dy V (x, y)ϕ(y, µ)

This evolution equation has a solution of the form

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

α = 3/2 because in Q2 →∞ limit QCD is invariant under the collinear
conformal group SL(2;R)

Gegenbauer-α = 3/2 polynomials are irreducible representations SL(2;R)

The coefficients of the Gegenbauer polynomials, a3/2
n (Q2), evolve

logarithmically to zero as Q2 →∞: ϕπ(x)→ ϕ
asy
π (x) = 6x (1− x)

At what scales is this a good approximation to the pion PDA?

E.g., AdS/QCD find ϕπ(x) ∼ x1/2 (1− x)1/2 at Q2 = 1 GeV2; expansion in

terms of C3/2
n (2x− 1) convergences slowly: a

3/2
32 / a

3/2
2 ∼ 10 %
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Pion PDA from the DSEs

asymptotic

rainbow-ladder

DCSB improved
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Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ζ = 2 GeV

A realization of DCSB on the light-front

As we shall see the dilation of pion’s PDA will influence the Q2 evolution of
the pion’s electromagnetic form factor

[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]
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Pion PDA from lattice QCD

Lattice QCD can only determine one
non-trivial moment
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

asymptotic

typical of standard analysis
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x
Standard practice to fit first coefficient of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
this procedure results in a double-humped pion PDA

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ∼ 0.52
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Updated Pion PDA from lattice QCD

Generalized expansion

ϕπ(x) = Nα x
α(1− x)α

[
1 +

∑
aα+
n (Q2)Cα+

n (2x− 1)
]

asymptotic lattice QCD

DCSB improved
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Updated lattice QCD moment: [V. Braun et al., arXiv:1503.03656 [hep-lat]]
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39) (?)

DSE prediction:
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.251
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When is the Pion’s PDA Asymptotic

asymptotic

Q2 = 4GeV2

Q2 = 100GeV2
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Under leading order Q2 evolution the pion PDA remains broad to well above
Q2 > 100 GeV2, compared with ϕasy

π (x) = 6x (1− x)

Consequently, the asymptotic form of the pion PDA is a poor approximation
at all energy scales that are either currently accessible or foreseeable in
experiments on pion elastic and transition form factors

Importantly, ϕasy
π (x) is only guaranteed be an accurate approximation to

ϕπ(x) when pion valence quark PDF satisfies: qπv (x) ∼ δ(x)

This is far from valid at forseeable energy scales

[I. C. Cloët, et al., Phys. Rev. Lett. 111, 092001 (2013)] [T. Nguyen, et al., Phys. Rev. C 83, 062201 (2011)]
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When is the Pion’s Valence PDF Asymptotic

LHC
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〈x qv(x)〉

〈x sea(x)〉

〈x g(x)〉

LO QCD evolution of momentum fraction carried by valence quarks

〈x qv(x)〉 (Q2) =

(
αs(Q

2)

αs(Q2
0)

)γ(0)2
qq /(2β0)

〈x qv(x)〉 (Q2
0) where

γ
(0)2
qq

2β0
> 0

therefore, as Q2 →∞ we have 〈x qv(x)〉 → 0 implies qv(x) ∝ δ(x)

At LHC energies valence quarks still carry 20% of pion momentum
the gluon distribution saturates at 〈x g(x)〉 ∼ 55%

Asymptotia is a long way away!
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Pion Elastic Form Factor
Direct, symmetry-preserving
computation of pion form factor
predicts maximum in Q2 Fπ(Q2)

at Q2 ≈ 6 GeV2

magnitude of this product is
determined by strength of DCSB at
all accessible scales

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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Q2The QCD prediction can be expressed as

Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Within DSEs there is consistency between the direct pion form factor
calculation and that obtained using the DSE pion PDA

15% disagreement explained by higher order/higher-twist corrections

We predict that QCD power law behaviour – with QCD’s scaling law
violations – sets in at Q2 ∼ 8 GeV2

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Pion PDF
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J. S. Conway et al., E615 (1989).

Q2 = 16GeV2

Need for QCD-based calculation is emphasized by story of pion’s valence
quark distribution function:

1989: uπv
x→1∼ (1− x)1 – inferred from LO-Drell-Yan & disagrees with QCD

2001: Dyson-Schwinger Equations (DSEs) predicts uπv
x→1∼ (1− x)2+γ –

argues that distribution inferred from data can’t be correct
2010: new NLO reanalysis – including soft-gluon resummation – inferred
distribution agrees with DSE-QCD

Potentially important ramifications for nucleon PDF studies!

[J. S. Conway et al. (E615 Collaboration), Phys. Rev. D 39, 92 (1989)] [M. Aicher, et al., Phys. Rev. Lett. 105, 252003 (2010)]
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A Unified Picture of the Pion

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data

0

0.1

0.2

0.3

0.4

0.5

Q
2
F
π
(Q

2
)

0 5 10 15 20

Q2

A single framework has provided a unified picture of the pion, that is, its
valence PDF, form factor and PDA

Surprisingly much of this physics is encapsulated in a simple algebraic
model:

S(p) =
[
−i /p+M

] [
p2 +M2

]−1
,

Γπ(p, k) = iγ5
3M3

4 fπ

∫ 1

−1

dz
(
1− z2

) [
k2

+ +M2
]−1

Can easily apply this model to the unpolarized pion TMD
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Unpolarized pion TMD – early DSE result
To determine the TMD use the light-front formalism – pion has two LFWFs
[
Ψ↑↓(x,~k

2
T ); kj Ψ↑↑(x,~k

2
T )
]

=
1

2p+

∫
dk−

2π
Tr
[
γ+γ5 χ(p, k); iσ+jγ5 χ(p, k)

]

χ(p, k) is the pion’s Bethe-Salpeter wavefunction
pion TMD given by a linear combination of the square of these LFWFs

We obtain

Ψ↑↓(x,~k
2
T ) =

2M3 x(1− x)

[~k2
T +M2]2

, Ψ↑↑(x,~k
2
T ) =

4iM2 x(1− x)

[~k2
T +M2]2

these LFWFs factorize in x and ~k2
T ; however expect dependence like

~k2
T /[x(1− x)] the light-front kinetic energy for massless quarks; also issues with

momentum conservation

Nevertheless this simple model reproduces many pion properties
to obtain correct x,~k2

T dependence likely need a more sophisticated interaction
clear example where interplay between experiment and theory can expose the
nature of the dressed interactions in QCD
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DSEs Results

Comparsion of our results [green] with those from Pasquini and Schweitzer,
PRD 90 014050 (2014) [red]

Each model gives a similar PDF but a different TMD, near k2
T = 0 and at

large k2
T one behaves as a Gasussian and our result as a power law in k2

T

Illustration of the potential for TMDs to differentiate between different
frameworks and thereby expose quark-gluon dynamics in QCD
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Nambu–Jona-Lasinio model

Continuum QCD ➞
“integrate out gluons” 1

m2
G

Θ(Λ2−k2)

this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model

model is a Lagrangian based covariant QFT which exhibits dynamical chiral
symmetry breaking & it elements can be QCD motivated via the DSEs

S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)
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The NJL model is very successful - provides a good description of numerous
hadron properties: form factors, PDFs, in-medium properties, etc

however the NJL model has no direct link to QCD
in general NJL has no confinement – but can be implemented with proper-time RS
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Nucleon quark distributions
Nucleon = quark+diquark
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〈q(x)− q̄(x)〉 = Nq, 〈xu(x) + x d(x) + . . .〉 = 1, |∆q(x)| , |∆T q(x)| 6 q(x)

0

0.4

0.8

1.2

1.6

x
d
v
(x
)

an
d

x
u
v
(x
)

0 0.2 0.4 0.6 0.8 1
x

Q2
0 = 0.16GeV2

Q2 = 5.0GeV2

MRST (5.0GeV2)

−0.2

0

0.2

0.4

0.6

0.8

x
∆
d
v
(x
)

an
d

x
∆
u
v
(x
)

0 0.2 0.4 0.6 0.8 1
x

Q2
0 = 0.16GeV2

Q2 = 5.0GeV2

AAC

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 621, 246 (2005)]
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Nucleon transversity quark distributions

−∆Tq(x) =

quarks in eigenstates of γ⊥ γ5

Sum rule gives tensor charge

gT =

∫
dx [∆Tu(x)−∆T d(x)]

Non-relativistically: ∆T q(x) = ∆q(x) – a measure of relativistic effects

Helicity conservation: no mixing bet’n ∆T q & ∆T g: J 6 1
2 ⇒ ∆T g(x) = 0

Therefore for the nucleon ∆T q(x) is valence quark dominated

At model scale we find: gT = 1.28 compare gA = 1.267 (input)

Q2 = 2.4 GeV2
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[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 659, 214 (2008)] [M. Anselmino et al, Nucl. Phys. Proc. Suppl. 191, 98 (2009)]
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Transverse Momentum Dependent PDFs
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Gaussian Fit 〈k2
T 〉 = 0.18

q(x, k2
T ) = q(x)

e−k2T /〈k2T 〉
π 〈k2

T 〉

So far only considered the simplest spin-averaged TMDs – q(x, k2
T )

Rigorously included diquark correlations in TMD calculation

qD/N (x, k2
T ) =

∫ 1

0

dy

∫ 1

0

dz

∫
d2~q⊥

∫
d2~̀⊥

δ(x− yz) δ(~̀⊥ − ~k⊥ − z~q⊥) fD/N (y, ~q⊥) fq/D(z, ~̀⊥)

Scalar diquark correlations greatly increase
〈
k2
T

〉

〈
k2
T

〉Q2=Q2
0

u
= 0.43 GeV2 〈

k2
T

〉
= 0.31 GeV2

[HERMES], 0.41 GeV2
[EMC]
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Flavour Dependence & Diquarks
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[ICC, Bentz, Thomas, PRC 90, 045202 (2014)]

P P
+

P P

Scalar diquark correlations give
sizable flavour dependence in

〈
k2
T

〉

70% of proton (uud) WF contains a
scalar diquark [ud]; Ms ' 650 MeV,
with M ' 400 MeV difficult for d-quark
to be at large x

Scalar diquark correlations also explain
the very different scaling behaviour
of the quark sector form factors
u[ud] diquark =⇒ extra 1/Q2 for d

Zero in F d1p a result of interference
between scalar and axial-vector diquarks

location of zero indicates relative strengths
– correlated with d/u ratio as x→ 1
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Conclusion
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Using the DSEs we find that DCSB drives numerous
effects in QCD, e.g., hadron masses, confinement
and many aspects of hadron structure

e.g. broading of pion PDA and maximum of
Q2 Fπ(Q2) directly related to DCSB

Have made significant advances in
understanding the pion form factor, PDF & PDA

TMDs and quark fragmentation into pions
an important next step

Have rigorously included scalar and
axial-vector diquark correlations
in a calculation of the nucleon TMDs

results in a dramatic increase in
〈
k2
T

〉

and a significant flavour dependence
of the TMDs
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