Dyson-Schwinger Equation approaches to TMDs

Ian Cloët Argonne National Laboratory

Parton transverse momentum distributions at large x: a window into parton dynamics in nucleon structure within QCD

ECT*, 11-25 April 2016

Office of Science

QCD: The Unifying Challenge

- Understanding QCD means to chart and compute this distribution of matter and energy within hadrons and nuclei; together with the complementary process of fragmentation functions
 - but a priori have no idea what QCD can produce
 - Solving QCD explain how massless gluons and light quarks form hadrons & thereby explain the origin of ~98% of the mass in the visible universe
 - must understand the emergent phenomena of *confinement* and *dynamical chiral symmetry breaking*
 - best promise for progress is a strong interplay between experiment and theory
- In the DSEs an understanding of QCD is gained by exposing the properties and behaviour of its dressed propagators, dressed vertices and interaction kernels

table of contents

QCD: The Unifying Challenge

- Understanding QCD means to chart and compute this distribution of matter and energy within hadrons and nuclei; together with the complementary process of fragmentation functions
 - but *a priori* have no idea what QCD can produce
 - Solving QCD explain how massless gluons and light quarks form hadrons & thereby explain the origin of ~98% of the mass in the visible universe
 - must understand the emergent phenomena of *confinement* and *dynamical chiral symmetry breaking*
 - best promise for progress is a strong interplay between experiment and theory
- In the DSEs an understanding of QCD is gained by exposing the properties and behaviour of its dressed propagators, dressed vertices and interaction kernels

table of contents

γ'/Z

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD \iff QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - must implement a symmetry preserving truncation
- Most important DSE is QCD's gap equation \implies *dressed quark propagator*

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

• S(p) has correct perturbative limit

- $M(p^2)$ exhibits dynamical mass generation \iff DCSB
- S(p) has complex conjugate poles
 no real mass shell ⇐⇒ confinement

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD \iff QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - must implement a symmetry preserving truncation
- Most important DSE is QCD's gap equation \implies *dressed quark propagator*

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

QCDs Dyson-Schwinger Equations

ETC!

DSEs – A closer look

Not possible to solve tower of equations – start with gap equation

- need ansatz for dressed gluon propagator × dressed quark-gluon vertex
- truncation must preserve symmetries, e.g., electromagnetic current, chiral

- usually choose Landau gauge $\xi = 0$
- Therefore both gluons and quarks posses dynamically generated masses
 - QCD dynamically generates its own infrared cutoffs

table of contents

ECT* 11-15 April 2016

Beyond Rainbow Ladder Truncation

Include "anomalous chromomagnetic" term in quark-gluon vertex

 $\frac{1}{4\pi} g^2 D_{\mu\nu}(\ell) \Gamma_{\nu}(p',p) \rightarrow \alpha_{\rm eff}(\ell) D_{\mu\nu}^{\rm free}(\ell) \left[\gamma_{\nu} + i\sigma^{\mu\nu} q_{\nu} \tau_5(p',p) + \ldots \right]$

- In chiral limit *anomalous chromomagnetic* term can only appear through DCSB – since it is not chirally symmetric
 - Expect strong gluon dressing to produce non-trivial structure for a dressed quark
 - recall dressing produces from massless quark a $M \sim 400 \,\mathrm{MeV}$ dressed quark
 - dressed quarks likely contain large amounts of orbital angular momentum
- Large anomalous chromomagnetic moment in the quark-gluon vertex – produces a large quark anomalous electromagnetic moment

• dressed quarks are not point particles!

8/29

table of contents

The Pion in QCD

- Today the pion is understood as both a bound state of a dressed-quark and a dressed-antiquark in QFT and the Goldstone mode associated with DCSB in OCD
- In QFT a two-body bound state (e.g. a pion or rho) is described by the BSE:

For the pion the solution has the general form

$$\Gamma_{\pi}(p,k) = \gamma_5 \Big[E_{\pi}(p,k) + \not p F_{\pi}(p,k) + \not k k \cdot p \mathcal{G}(p,k) + \sigma^{\mu\nu} k_{\mu} p_{\nu} \mathcal{H}(p,k) \Big]$$

- the kernel must yield a solution that encapsulates the consequences of dynamical chiral symmetry breaking, e.g., in chiral limit $m_{\pi} = 0$ & also $m_{\pi}^2 \propto m_u + m_d$
- DSCB implies, e.g., a Goldberger-Treiman-like relation for the pion:

$$f_{\pi} E_{\pi}(p=0,k^2) = B(k^2)$$
 recall $S(p)^{-1} = p A(k^2) + B(k^2)$

Light-Front Wave Functions

- In equal-time quantization a hadron wave function is a frame dependent concept
 - boost operators are dynamical, that is, they are interaction dependent
- In high energy scattering experiments particles move at near speed of light
 - natural to quantize a theory at equal light-front time: $\tau = (t+z)/\sqrt{2}$

- Light-front quantization \implies light-front WFs; many remarkable properties:
 - frame-independent; probability interpretation as close as QFT gets to QM
 - boosts are kinematical not dynamical
- With the LFWFs many observables can be straightforwardly determined so far we have focused on the parton distribution amplitudes (PDAs):

$$arphi(x) = \int d^2 \vec{k}_{\perp} \; \psi(x, \vec{k}_{\perp}) \; ,$$

Pion's Parton Distribution Amplitude

- pion's PDA $\varphi_{\pi}(x)$: is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state
 - it's a function of the light-cone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2

PDAs enter numerous hard exclusive scattering processes

Pion's Parton Distribution Amplitude

- **pion's PDA** $\varphi_{\pi}(x)$: *is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state*
 - it's a function of the light-cone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2
- The pion's PDA is defined by

$$f_{\pi} \, \varphi_{\pi}(x) = Z_2 \int \frac{d^4k}{(2\pi)^2} \, \delta\left(k^+ - x \, p^+\right) \operatorname{Tr}\left[\gamma^+ \gamma_5 \, S(k) \, \Gamma_{\pi}(k, p) \, S(k-p)\right]$$

• $S(k) \Gamma_{\pi}(k, p) S(k - p)$ is the pion's Bethe-Salpeter wave function

- in the non-relativistic limit it corresponds to the Schrodinger wave function
- φ_π(x): is the axial-vector projection of the pion's Bethe-Salpeter wave function onto the light-front [at twist-2 also pseudoscalar projection]
- Pion PDA is an essentially nonperturbative quantity whose asymptotic form is known; in this regime governs, e.g., Q² dependence of pion form factor

$$Q^2 F_{\pi}(Q^2) \xrightarrow{Q^2 \to \infty} 16 \pi f_{\pi}^2 \alpha_s(Q^2) \qquad \Longleftrightarrow \qquad \varphi_{\pi}^{\text{asy}}(x) = 6 x (1-x)$$

QCD Evolution & Asymptotic PDA

ERBL (Q^2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

$$\mu \frac{d}{d\mu} \varphi(x,\mu) = \int_0^1 dy \ V(x,y) \, \varphi(y,\mu)$$

This evolution equation has a solution of the form

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- α = 3/2 because in Q² → ∞ limit QCD is invariant under the collinear conformal group SL(2; ℝ)
- Gegenbauer- $\alpha = 3/2$ polynomials are irreducible representations $SL(2;\mathbb{R})$
- The coefficients of the Gegenbauer polynomials, $a_{\pi}^{3/2}(Q^2)$, evolve logarithmically to zero as $Q^2 \to \infty$: $\varphi_{\pi}(x) \to \varphi_{\pi}^{asy}(x) = 6 x (1-x)$
- At what scales is this a good approximation to the pion PDA?

• E.g., AdS/QCD find $\varphi_{\pi}(x) \sim x^{1/2} (1-x)^{1/2}$ at $Q^2 = 1 \text{ GeV}^2$; expansion in terms of $C_n^{3/2}(2x-1)$ convergences slowly: $a_{32}^{3/2}/a_2^{3/2} \sim 10\%$

Pion PDA from the DSEs

Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a pronounced broadening compared with the asymptotic pion PDA

- scale of calculation is given by renormalization point $\zeta = 2 \,\text{GeV}$
- A realization of DCSB on the light-front
- As we shall see the dilation of pion's PDA will influence the Q^2 evolution of the pion's electromagnetic form factor

Pion PDA from lattice QCD

Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2 o \infty$
- this procedure results in a *double-humped* pion PDA
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha}(1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \sim 0.52$

Pion PDA from lattice QCD

Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2
 ightarrow \infty$
- this procedure results in a *double-humped* pion PDA
- Advocate using a *generalized expansion*

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha} (1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \sim 0.52$ table of contents ECT* 11-15 April 2016 15/29

Updated Pion PDA from lattice QCD

Updated lattice QCD moment: [V. Braun *et al.*, arXiv:1503.03656 [hep-lat]]

$$\int_{0}^{1} dx \, (2 \, x - 1)^{2} \varphi_{\pi}(x) = 0.2361 \, (41) \, (39) \, (?)$$

DSE prediction:

$$\int_0^1 dx \, (2x-1)^2 \varphi_\pi(x) = 0.251$$

When is the Pion's PDA Asymptotic

• Under leading order Q^2 evolution the pion PDA remains broad to well above $Q^2 > 100 \text{ GeV}^2$, compared with $\varphi_{\pi}^{\text{asy}}(x) = 6 x (1 - x)$

• Consequently, the asymptotic form of the pion PDA is a poor approximation at all energy scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors

• Importantly, $\varphi_{\pi}^{\text{asy}}(x)$ is only guaranteed be an accurate approximation to $\varphi_{\pi}(x)$ when pion valence quark PDF satisfies: $q_{v}^{\pi}(x) \sim \delta(x)$

This is far from valid at forseeable energy scales

When is the Pion's Valence PDF Asymptotic

LO QCD evolution of momentum fraction carried by valence quarks

$$\left\langle x \, q_v(x) \right\rangle(Q^2) = \left(\frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)}\right)^{\gamma_{qq}^{(0)2}/(2\beta_0)} \left\langle x \, q_v(x) \right\rangle(Q_0^2) \quad \text{where} \quad \frac{\gamma_{qq}^{(0)2}}{2\beta_0} > 0$$

• therefore, as $Q^2 \to \infty$ we have $\langle x q_v(x) \rangle \to 0$ implies $q_v(x) \propto \delta(x)$

At LHC energies valence quarks still carry 20% of pion momentum
 the gluon distribution saturates at (x g(x)) ~ 55%

• Asymptotia is a long way away!

table of contents

Pion Elastic Form Factor

- Direct, symmetry-preserving computation of pion form factor predicts maximum in $Q^2 F_{\pi}(Q^2)$ at $Q^2 \approx 6 \text{ GeV}^2$
 - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as

$$\mathcal{Q}^2 F_{\pi}(Q^2) \overset{Q^2 \gg \Lambda^2_{\text{QCD}}}{\sim} 16 \pi f_{\pi}^2 \alpha_s(Q^2) \, \boldsymbol{w}_{\pi}^2; \qquad \boldsymbol{w}_{\pi} = \frac{1}{3} \int_0^1 dx \, \frac{1}{x} \, \varphi_{\pi}(x)$$

- Within DSEs there is consistency between the direct pion form factor calculation and that obtained using the DSE pion PDA
 - 15% disagreement explained by higher order/higher-twist corrections
- We predict that QCD power law behaviour with QCD's scaling law violations sets in at $Q^2 \sim 8 \text{ GeV}^2$

table of contents

ECT* 11-15 April 2016

Pion PDF

- Need for *QCD-based* calculation is emphasized by story of pion's valence quark distribution function:
 - 1989: $u_n^{\pi} \stackrel{x \to 1}{\sim} (1-x)^1$ inferred from LO-Drell-Yan & disagrees with QCD
 - 2001: Dyson-Schwinger Equations (DSEs) predicts $u_n^{\pi} \sim^{x \to 1} (1-x)^{2+\gamma}$ argues that distribution inferred from data can't be correct
 - 2010: new NLO reanalysis including soft-gluon resummation inferred distribution agrees with DSE-QCD

Potentially important ramifications for nucleon PDF studies!

A Unified Picture of the Pion

- A single framework has provided a unified picture of the pion, that is, its valence PDF, form factor and PDA
- Surprisingly much of this physics is encapsulated in a simple algebraic model:

$$S(p) = \left[-i \not p + M\right] \left[p^2 + M^2\right]^{-1},$$

$$\Gamma_{\pi}(p,k) = i\gamma_5 \frac{3M^3}{4f_{\pi}} \int_{-1}^{1} dz \, \left(1 - z^2\right) \left[k_+^2 + M^2\right]^{-1}$$

Can easily apply this model to the unpolarized pion TMD

Unpolarized pion TMD – early DSE result

• To determine the TMD use the light-front formalism – pion has two LFWFs

$$\left[\Psi_{\uparrow\downarrow}(x,\vec{k}_T^2);\ k^j\ \Psi_{\uparrow\uparrow}(x,\vec{k}_T^2)\right] = \frac{1}{2p^+} \int \frac{dk^-}{2\pi} \operatorname{Tr}\left[\gamma^+\gamma_5\ \chi(p,k);\ i\sigma^{+j}\gamma_5\ \chi(p,k)\right]$$

- $\chi(p,k)$ is the pion's Bethe-Salpeter wavefunction
- pion TMD given by a linear combination of the square of these LFWFs

We obtain

$$\Psi_{\uparrow\downarrow}(x,\vec{k}_T^2) = \frac{2\,M^3\,x(1-x)}{[\vec{k}_T^2 + M^2]^2}, \qquad \Psi_{\uparrow\uparrow}(x,\vec{k}_T^2) = \frac{4i\,M^2\,x(1-x)}{[\vec{k}_T^2 + M^2]^2}$$

• these LFWFs factorize in x and \vec{k}_T^2 ; however expect dependence like $\vec{k}_T^2/[x(1-x)]$ the light-front kinetic energy for massless quarks; also issues with momentum conservation

• Nevertheless this simple model reproduces many pion properties

- to obtain correct x, \vec{k}_T^2 dependence likely need a more sophisticated interaction
- clear example where interplay between experiment and theory can expose the nature of the dressed interactions in QCD

Comparsion of our results [green] with those from *Pasquini and Schweitzer*, *PRD* 90 014050 (2014) [red]

- Each model gives a similar PDF but a different TMD, near $k_T^2 = 0$ and at large k_T^2 one behaves as a Gasussian and our result as a power law in k_T^2
- Illustration of the potential for TMDs to differentiate between different frameworks and thereby expose quark-gluon dynamics in QCD

table of contents

ECT* 11-15 April 2016

Nambu–Jona-Lasinio model Continuum QCD "integrate out gluons" $figure = \frac{1}{m_G^2} \Theta(\Lambda^2 - k^2)$ • this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model • model is a Lagrangian based covariant QFT which exhibits dynamical chiral symmetry breaking & it elements can be QCD motivated via the DSEs

The NJL model is very successful - provides a good description of numerous hadron properties: form factors, PDFs, in-medium properties, etc

- however the NJL model has no direct link to QCD
- in general NJL has no confinement but can be implemented with proper-time RS

ECT* 11-15 April 2016

Nucleon quark distributions

• Nucleon = quark+diquark • PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$

Covariant, correct support; satisfies sum rules, Soffer bound & positivity

 $\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$

Nucleon transversity quark distributions

Sum rule gives tensor charge

$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right]$$

- quarks in eigenstates of $\gamma^{\perp} \gamma_5$
- Non-relativistically: $\Delta_T q(x) = \Delta q(x) a$ measure of relativistic effects
- Helicity conservation: no mixing bet'n $\Delta_T q \& \Delta_T g$: $J \leq \frac{1}{2} \Rightarrow \Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated

• At model scale we find: $g_T = 1.28$ compare $g_A = 1.267$ (input)

ECT* 11-15 April 2016

Nucleon transversity quark distributions

Sum rule gives tensor charge

$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right]$$

- quarks in eigenstates of $\gamma^{\perp} \gamma_5$
- Non-relativistically: $\Delta_T q(x) = \Delta q(x) a$ measure of relativistic effects
- Helicity conservation: no mixing bet'n $\Delta_T q \& \Delta_T g$: $J \leq \frac{1}{2} \Rightarrow \Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated

• At model scale we find: $g_T = 1.28$ compare $g_A = 1.267$ (input)

Transverse Momentum Dependent PDFs

So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$

Rigorously included diquark correlations in TMD calculation

$$\begin{split} q_{D/N}(x,k_T^2) &= \int_0^1 dy \int_0^1 dz \int d^2 \vec{q}_\perp \int d^2 \vec{\ell}_\perp \\ \delta(x-yz) \ \delta(\vec{\ell}_\perp - \vec{k}_\perp - z \vec{q}_\perp) \ f_{D/N}(y,\vec{q}_\perp) \ f_{q/D}(z,\vec{\ell}_\perp) \end{split}$$

Scalar diquark correlations greatly increase $\langle k_T^2 \rangle$

Flavour Dependence & Diquarks

- Scalar diquark correlations give sizable flavour dependence in $\langle k_T^2 \rangle$
 - 70% of proton (uud) WF contains a scalar diquark [ud]; $M_s \simeq 650$ MeV, with $M \simeq 400$ MeV difficult for *d*-quark to be at large x
- Scalar diquark correlations also explain the very different scaling behaviour of the quark sector form factors
 - u[ud] diquark \Longrightarrow extra $1/Q^2$ for d
- Zero in F_{1p}^d a result of interference \overrightarrow{b} between scalar and axial-vector diquarks
 - location of zero indicates relative strengths
 correlated with d/u ratio as x → 1

[ICC, Bentz, Thomas, PRC 90, 045202 (2014)]

Conclusion

- Using the DSEs we find that DCSB drives numerous effects in QCD, e.g., hadron masses, confinement and many aspects of hadron structure
 - e.g. broading of pion PDA and maximum of $Q^2 F_{\pi}(Q^2)$ directly related to DCSB
- Have made significant advances in understanding the pion form factor, PDF & PDA
 - TMDs and quark fragmentation into pions an important next step
- Have rigorously included scalar and axial-vector diquark correlations in a calculation of the nucleon TMDs
 - results in a dramatic increase in $\langle k_T^2 \rangle$ and a significant flavour dependence of the TMDs

