TMD Factorization in Semi-Inclusive Hard Processes

Old Dominion University and Jefferson Laboratory

Ted Rogers

Based on current work with J. Collins, L. Gamberg, A. Prokudin, N. Sato and B. Wang

April 11, 2016

Interest in Semi-Inclusive Processes

- Large Q: probe quark & gluon degrees of freedom
- Additional structures accessible
 - TMD PDFs
 - TMD fragmentation functions
 - Spin dependent TMD functions
- Evolution
 - Relate different physical observables
- Careful account of factorization is essential
 - Calculations involves interplay of different kinds of physics

Transverse Momentum in Semi-Inclusive DIS

Fragmentation Function: dependence on Q^2 , z

Outline

- Not in this talk (but important):
 - Precise definitions of TMD correlation functions.
 - Detailed treatment of evolution.
- In this talk:
 - Matching all regions of q_T :
 - Incorporate directly at the level of factorization formalization rather than at implementation.
 - Relationship between integrated and collinear cross sections.
 - W + Y formalization
 - What has usually been done
 - What we do

Notation

• Cross Section (unpolarized)

$$\Gamma(q_{\mathrm{T}}, Q) = \frac{\mathrm{d}\,\sigma}{\mathrm{d}^2 \boldsymbol{q}_{\mathrm{T}}\,\mathrm{d}Q\cdots}$$

- Hadronic mass scale: m
- Errors: $O\left(\frac{m}{Q}\right)$
- Coordinate space cutoff: $b_*(b_T) \equiv \sqrt{\frac{b_T^2}{1 + b_T^2/b_{max}^2}}$
- Scales:

$$\mu_b \equiv C_1/b_{\rm T}, \qquad \mu_{b_*} \equiv C_1/b_*, \qquad \mu_Q \equiv C_2Q,$$

Regions of Transverse Momentum

Central interest in JLab Experiments

Example: Sea vs. Valence Quark TMD PDFs

Phenomenology: (Signori, Bacchetta, Radici, Schnell (2013))

Transverse Momentum Dependent Factorization

- Incorporate all processes.
 - SIDIS, DY, e⁺e⁻, different target, different final states...
 - Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_{1}}(x,k_{1T},Q) \otimes D_{H_{2}/f}(z,k_{2T},Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_{1}}(x_{1},k_{1T},Q) \otimes F_{\bar{f}/H_{2}}(x_{2},k_{2T},Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}^{+}\text{e}^{-}} = \sum_{f} \mathcal{H}_{f,\text{e}^{+}\text{e}^{-}}(Q) \otimes D_{H_{1}/\bar{f}}(z_{1},k_{1T},Q) \otimes D_{H_{2}/f}(z_{2},k_{2T},Q) + Y_{\text{e}^{+}\text{e}^{-}}$$

Transverse Momentum Dependent Factorization in SIDIS

(Meng, Olness, Soper: 1992, 1996)

(J.C. Collins: (Foundations of Perturbative QCD, 2011), Chaps. 10,13,14)

9

The W-term

$$W(q_{\mathrm{T}},Q) = \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}(b_{\mathrm{T}},Q)$$

 $\tilde{W}(b_{\mathrm{T}},Q) = \boldsymbol{H}(\mu_Q,Q)\tilde{F}_{j/A}(x_A,\boldsymbol{b}_{\mathrm{T}};Q^2,\mu_Q)\tilde{D}_{B/j}(z_B,\boldsymbol{b}_{\mathrm{T}};Q^2,\mu_Q)$

$$W(q_{\mathrm{T}},Q) = \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}(b_{\mathrm{T}},Q)$$

$$\begin{split} & H(\mu_Q, Q) \tilde{F}_{j/A}(x_A, b_{\mathrm{T}}; Q_0^2, \mu_{Q_0}) \tilde{D}_{B/j}(z_B, b_{\mathrm{T}}; Q_0^2, \mu_{Q_0}) \\ & \times \exp\left\{ \int_{\mu_{Q_0}}^{\mu_Q} \frac{\mathrm{d}\mu'}{\mu'} \left[2\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q^2}{(\mu')^2} \gamma_K(\alpha_s(\mu')) \right] \right\} \\ & \times \exp\left\{ \left[-g_K(b_{\mathrm{T}}; b_{\mathrm{max}}) + \tilde{K}(b_*; \mu_{b_*}) - \int_{\mu_{b_*}}^{\mu_{Q_0}} \frac{\mathrm{d}\mu'}{\mu'} \gamma_K(\alpha_s(\mu')) \right] \ln\left(\frac{Q^2}{Q_0^2}\right) \right\} \end{split}$$

$$W(q_{\mathrm{T}},Q) = \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}(b_{\mathrm{T}},Q)$$
$$\int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}(b_{*}(b_{\mathrm{T}}),Q) \tilde{W}_{\mathrm{NP}}(b_{\mathrm{T}},Q)$$

$$\tilde{W}(b_{\rm T}, Q) = \tilde{W}^{\rm OPE}(b_*(b_{\rm T}), Q) + O((b_{\rm T}m)^p)$$

 $\mu_{b_*} \equiv C_1/b_*$

Evolve TMD functions again

$$\begin{split} \tilde{W}^{\text{OPE}}(b_{*}(b_{\text{T}}),Q) &\equiv H(\mu_{Q},Q) \sum_{j'i'} \int_{x_{A}}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{j/j'}^{\text{PDF}}(x_{A}/\hat{x},b_{*}(b_{\text{T}});\mu_{b_{*}}^{2},\mu_{b_{*}},\alpha_{s}(\mu_{b_{*}})) f_{j'/A}(\hat{x};\mu_{b_{*}}) \times \\ & \times \int_{z_{B}}^{1} \frac{d\hat{z}}{\hat{z}^{3}} \tilde{C}_{i'/j}^{\text{FF}}(z_{B}/\hat{z},b_{*}(b_{\text{T}});\mu_{b_{*}}^{2},\mu_{b_{*}},\alpha_{s}(\mu_{b_{*}})) d_{B/i'}(\hat{z};\mu_{b_{*}}) \times \\ & \times \exp\left\{\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}(b_{*}(b_{\text{T}});\mu_{b_{*}}) + \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_{s}(\mu');1) - \ln\frac{Q^{2}}{\mu'^{2}}\gamma_{K}(\alpha_{s}(\mu'))\right]\right\} \end{split}$$

 $\tilde{W}_{\rm NP}(b_{\rm T},Q)$ =

$$e^{-g_A(x_A,b_{\rm T};b_{\rm max})-g_B(z_B,b_{\rm T};b_{\rm max})-2g_K(b_{\rm T};b_{\rm max})\ln(Q/Q_0)} \equiv \frac{\tilde{W}(b_{\rm T},Q)}{\tilde{W}^{\rm OPE}(b_*(b_{\rm T}),Q)}$$

$$W(q_{\mathrm{T}},Q) = \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}(b_{\mathrm{T}},Q)$$

$$H(\mu_{Q},Q) \sum_{j'i'} \int_{x_{A}}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{j/j'}^{\text{PDF}}(x_{A}/\hat{x},b_{*}(b_{\mathrm{T}});\mu_{b_{*}}^{2},\mu_{b_{*}},\alpha_{s}(\mu_{b_{*}})) f_{j'/A}(\hat{x};\mu_{b_{*}}) \times \\ \times \int_{z_{B}}^{1} \frac{d\hat{z}}{\hat{z}^{3}} \tilde{C}_{i'/j}^{\text{FF}}(z_{B}/\hat{z},b_{*}(b_{\mathrm{T}});\mu_{b_{*}}^{2},\mu_{b_{*}},\alpha_{s}(\mu_{b_{*}})) d_{B/i'}(\hat{z};\mu_{b_{*}}) \times \\ \times \exp\left\{\ln\frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}(b_{*}(b_{\mathrm{T}});\mu_{b_{*}}) + \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_{s}(\mu');1) - \ln\frac{Q^{2}}{\mu'^{2}}\gamma_{K}(\alpha_{s}(\mu'))\right]\right\} \\ \times \exp\left\{-g_{A}(x_{A},b_{\mathrm{T}};b_{\mathrm{max}}) - g_{B}(z_{B},b_{\mathrm{T}};b_{\mathrm{max}}) - 2g_{K}(b_{\mathrm{T}};b_{\mathrm{max}})\ln\left(\frac{Q}{Q_{0}}\right)\right\}$$

All Transverse Momenta

"TMD part" / W-term (good q_T << Q approximation)

Approx. 1
$$\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} = \Gamma(q_{\mathrm{T}}, Q) + O\left(\frac{q_{\mathrm{T}}}{Q}\right)^{a} \Gamma(q_{\mathrm{T}}, Q) + O\left(\frac{m}{Q}\right)^{a'} \Gamma(q_{\mathrm{T}}, Q) + \cdots + O\left(\frac{q_{\mathrm{T}}}{Q}\right)^{a+1} + \cdots + O\left(\frac{m}{Q}\right)^{a'+1} + \cdots$$

- "Fixed Order" (good $q_T >> m$ approximation) Approx. 2 $\begin{bmatrix} \Gamma(q_T, Q) \end{bmatrix} = \Gamma(q_T, Q) + O\left(\frac{m}{q_T}\right)^b \Gamma(q_T, Q) + \cdots + O\left(\frac{m}{q_T}\right)^{b+1} + \cdots$
- W-term <u>error</u>:

$$\Gamma(q_{\mathrm{T}},Q) - \text{Approx. 1} \left[\Gamma(q_{\mathrm{T}},Q) \right] = O\left(\frac{q_{\mathrm{T}}}{Q}\right)^{a} \Gamma(q_{\mathrm{T}},Q) + O\left(\frac{m}{Q}\right)^{a'} \Gamma(q_{\mathrm{T}},Q) + \cdots + O\left(\frac{q_{\mathrm{T}}}{Q}\right)^{a+1} + \cdots + O\left(\frac{m}{Q}\right)^{a'+1} + \cdots + O\left(\frac{m}{Q}\right)^{a'+1} + \cdots$$

• W-term approximation with error

$$\Gamma(q_{\rm T}, Q) = \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\rm T}, Q) \end{bmatrix} + \begin{pmatrix} \Gamma(q_{\rm T}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\rm T}, Q) \end{bmatrix} \end{pmatrix}$$

• Y-term Correction

Approx. 2
$$\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$$

$$= \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix}$$

$$+ \left(O\left(\frac{m}{q_{\mathrm{T}}}\right)^{b} + \cdots \right) \left(\Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \right)$$

$$= \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix}$$

$$+ \left(O\left(\frac{m}{q_{\mathrm{T}}}\right)^{b} + \cdots \right) \left(O\left(\frac{q_{\mathrm{T}}}{Q}\right)^{a} \Gamma(q_{\mathrm{T}}, Q) + O\left(\frac{m}{Q}\right)^{a'} \Gamma(q_{\mathrm{T}}, Q) + \cdots \right)$$

$$= \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \left[\Gamma(q_{\mathrm{T}}, Q) \right] + O\left(\frac{m}{Q}\right)^{\min(a, a', b)} \Gamma(q_{\mathrm{T}}, Q)$$

• Total:

• What about $q_T < m$ and $q_T > Q$?

• What about inclusive integral?

Goal:

Generalize/Improve W+Y Formalization

Semi-Inclusive to Inclusive

• Parton Model W-term:

$$W(q_{\rm T}, Q) = \boldsymbol{H} \int d^2 \boldsymbol{k}_{\rm T} F(\boldsymbol{x}, \boldsymbol{q}_{\rm T} - \boldsymbol{k}_{\rm T}) D(\boldsymbol{z}_A, \boldsymbol{k}_{\rm T})$$
$$\int d^2 q_{\rm T} W(q_{\rm T}, Q) = \boldsymbol{H} f(\boldsymbol{x}) d(\boldsymbol{z})$$

• CSS / TMD factorization formalism W-term:

$$W(q_{\mathrm{T}}, Q) = \boldsymbol{H}(\boldsymbol{\mu}_{Q}, \boldsymbol{Q}) \int \mathrm{d}^{2}\boldsymbol{k}_{\mathrm{T}} F(\boldsymbol{x}, \boldsymbol{q}_{\mathrm{T}} - \boldsymbol{k}_{\mathrm{T}}; \boldsymbol{Q}^{2}, \boldsymbol{\mu}_{Q}) D(\boldsymbol{z}, \boldsymbol{k}_{\mathrm{T}}; \boldsymbol{Q}, \boldsymbol{\mu}_{Q})$$
$$\int \mathrm{d}^{2}q_{\mathrm{T}} W(q_{\mathrm{T}}, \boldsymbol{Q}) = 0$$

Very Large and Very Small q_T

- a) W-term: good approximation for $q_T/Q \rightarrow 0$
- b) Fixed order term: good for $q_T \rightarrow O(Q)$
- c) W + Y is good for $O(m) \ll q_T \ll O(Q)$
 - Bad for $q_T < O(m)$, $q_T > O(Q)$
 - But no problem in principle: Recall a) & b)
 - Switch off W+Y below some min q_T and above some max q_T/Q
- d) Need to simultaneously drop powers of $m/q_T \& q_T/Q$

Very Large and Very Small q_T

 d) Culprit: W and Y are used far outside their domains of accuracy; default treatments of errors not necessarily optimal.

Generalized W+Y Formalization

- <u>Requirements</u>
 - 1) $q_T \ll Q$ approximation shouldn't contribute for $q_T > Q$. $q_T \gg m$ approximation shouldn't contribute for $q_T \ll m$. *Guzzi,, Nadolsky, Wang (2014)*
 - 2) Integrated TMD formalism should match collinear formalism. "Unitarity": *Bozzi, Catani, de Florian, Grazzini (2006)*
 - 3) Integrated TMD parton model should match collinear parton model.
 - 4) Should recover standard W+Y treatment for $Q \rightarrow \infty$ and for $m \ll q_T \ll Q$.

Generalized W-term

• Basic

$$W(q_{\rm T}, Q) = \int \frac{\mathrm{d}^{2} b_{\rm T}}{(2\pi)^{2}} e^{i q_{\rm T} \cdot b_{\rm T}} \tilde{W}(b_{\rm T}, Q)$$
• Generalized

$$W_{\rm New}(q_{\rm T}, Q; \eta, C_{5}) = \Xi \left(\frac{q_{\rm T}}{Q}, \eta\right) \int \frac{\mathrm{d}^{2} b_{\rm T}}{(2\pi)^{2}} e^{i q_{\rm T} \cdot b_{\rm T}} \tilde{W}(b_{c}(b_{\rm T}), Q)$$
• $b_{c}(b_{\rm T}) = \sqrt{b_{\rm T}^{2} + C_{1}^{2}/\mu_{\rm max}^{2}}$

$$\mu_{\rm max} = C_{5} \mu_{Q}/b_{0}$$

$$b_{0} \equiv 2 \exp(-\gamma_{E})$$
Addresses point 3.)
and part of point 1.)

Notation

• Cross Section (unpolarized)

$$\Gamma(q_{\mathrm{T}}, Q) = \frac{\mathrm{d}\,\sigma}{\mathrm{d}^2 \boldsymbol{q}_{\mathrm{T}}\,\mathrm{d}Q\cdots}$$

- Hadronic mass scale: m
- Errors: $O\left(\frac{m}{Q}\right)$
- Coordinate space cutoff: $b_*(b_T) \equiv \sqrt{\frac{b_T^2}{1 + b_T^2/b_{max}^2}}$
- Scales:

$$\mu_b \equiv C_1/b_{\rm T}, \qquad \mu_{b_*} \equiv C_1/b_*, \qquad \mu_Q \equiv C_2Q,$$

Generalized W-term

• Ordinary steps still apply:

$$W_{\text{New}}(q_{\text{T}}, Q; \eta, C_5) = \Xi\left(\frac{q_{\text{T}}}{Q}, \eta\right) \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\text{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\text{T}} \cdot \boldsymbol{b}_{\text{T}}} \tilde{W}^{\text{OPE}}(\boldsymbol{b}_*(\boldsymbol{b}_c(\boldsymbol{b}_{\text{T}})), Q) \tilde{W}_{\text{NP}}(\boldsymbol{b}_c(\boldsymbol{b}_{\text{T}}), Q)$$

$$- \qquad b_*(b_c(b_{\mathrm{T}})) \longrightarrow \begin{cases} b_{\mathrm{min}} & b_{\mathrm{T}} \ll b_{\mathrm{min}} \\ b_{\mathrm{T}} & b_{\mathrm{min}} \ll b_{\mathrm{T}} \ll b_{\mathrm{max}} \\ b_{\mathrm{max}} & b_{\mathrm{T}} \gg b_{\mathrm{max}} \end{cases}$$

$$W(q_{\mathrm{T}},Q) = \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}(b_{\mathrm{T}},Q)$$
$$\int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}(b_{*}(b_{\mathrm{T}}),Q) \tilde{W}_{\mathrm{NP}}(b_{\mathrm{T}},Q)$$

$$\tilde{W}(b_{\rm T}, Q) = \tilde{W}^{\rm OPE}(b_*(b_{\rm T}), Q) + O((b_{\rm T}m)^p)$$

 $\mu_{b_*} \equiv C_1/b_*$

Evolve TMD functions again

$$\int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}(b_*(b_c(b_{\mathrm{T}})), Q) \tilde{W}_{\mathrm{NP}}(b_c(b_{\mathrm{T}}), Q)$$

$$\tilde{W}(b_c(b_{\rm T}),Q) = \tilde{W}^{\rm OPE}(b_*(b_c(b_{\rm T})),Q) + O\left((b_c(b_{\rm T})m)^p\right)$$
$$\bar{\mu} \equiv \frac{C_1}{b_*(b_c(b_{\rm T}))}$$
Evolve TMD functions again

$$\begin{split} H(\mu_Q, Q) &\sum_{j'i'} \int_{x_A}^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{j/j'}^{\text{PDF}}(x_A/\hat{x}, b_*(b_{\mathrm{T}}); \mu_{b_*}^2, \mu_{b_*}, \alpha_s(\mu_{b_*})) f_{j'/A}(\hat{x}; \mu_{b_*}) \times \\ &\times \int_{z_B}^1 \frac{d\hat{z}}{\hat{z}^3} \tilde{C}_{i'/j}^{\text{FF}}(z_B/\hat{z}, b_*(b_{\mathrm{T}}); \mu_{b_*}^2, \mu_{b_*}, \alpha_s(\mu_{b_*})) d_{B/i'}(\hat{z}; \mu_{b_*}) \times \\ &\times \exp\left\{\ln \frac{Q^2}{\mu_{b_*}^2} \tilde{K}(b_*(b_{\mathrm{T}}); \mu_{b_*}) + \int_{\mu_{b_*}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q^2}{\mu'^2} \gamma_K(\alpha_s(\mu'))\right]\right\} \\ &\times \exp\left\{-g_A(x_A, b_{\mathrm{T}}; b_{\mathrm{max}}) - g_B(z_B, b_{\mathrm{T}}; b_{\mathrm{max}}) - 2g_K(b_{\mathrm{T}}; b_{\mathrm{max}}) \ln\left(\frac{Q}{Q_0}\right)\right\} \end{split}$$

$$\tilde{W}(b_{\mathrm{T}},Q) \longrightarrow \tilde{W}(b_{c}(b_{\mathrm{T}}),Q)$$

$$\begin{split} H(\mu_Q, Q) &\sum_{j'i'} \int_{x_A}^1 \frac{d\hat{x}}{\hat{x}} \tilde{C}_{j/j'}^{\text{PDF}}(x_A/\hat{x}, b_*(b_c(b_{\mathrm{T}})); \bar{\mu}^2, \bar{\mu}, \alpha_s(\bar{\mu})) f_{j'/A}(\hat{x}; \bar{\mu}) \times \\ &\times \int_{z_B}^1 \frac{d\hat{z}}{\hat{z}^3} \tilde{C}_{i'/j}^{\text{FF}}(z_B/\hat{z}, b_*(b_c(b_{\mathrm{T}})); \bar{\mu}^2, \bar{\mu}, \alpha_s(\bar{\mu})) d_{B/i'}(\hat{z}; \bar{\mu}) \times \\ &\times \exp\left\{\ln \frac{Q^2}{\bar{\mu}^2} \tilde{K}(b_*(b_c(b_{\mathrm{T}})); \bar{\mu}) + \int_{\bar{\mu}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q^2}{{\mu'}^2} \gamma_K(\alpha_s(\mu'))\right]\right\} \\ &\times \exp\left\{-g_A(x_A, b_c(b_{\mathrm{T}}); b_{\max}) - g_B(z_B, b_c(b_{\mathrm{T}}); b_{\max}) - 2g_K(b_c(b_{\mathrm{T}}); b_{\max}) \ln\left(\frac{Q}{Q_0}\right)\right\} \end{split}$$

Generalized W-term

• Ordinary steps still apply:

 $W_{\text{New}}(q_{\text{T}}, Q; \eta, C_5) = \Xi\left(\frac{q_{\text{T}}}{Q}, \eta\right) \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\text{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\text{T}} \cdot \boldsymbol{b}_{\text{T}}} \tilde{W}^{\text{OPE}}(b_*(b_c(b_{\text{T}})), Q) \tilde{W}_{\text{NP}}(b_c(b_{\text{T}}), Q)$

$$- \qquad b_*(b_c(b_{\mathrm{T}})) \longrightarrow \begin{cases} b_{\min} & b_{\mathrm{T}} \ll b_{\min} \\ b_{\mathrm{T}} & b_{\min} \ll b_{\mathrm{T}} \ll b_{\max} \\ b_{\max} & b_{\mathrm{T}} \gg b_{\max} \end{cases}$$

Relationship to Inclusive (Integrated) Cross Section

• Recall:

$$\int \mathrm{d}^2 q_\mathrm{T} \, W(q_\mathrm{T}, Q) = 0$$

$$\mu_c \equiv \lim_{b_{\rm T}\to 0} \bar{\mu} \approx \frac{C_1}{b_{\rm min}} \sqrt{1 + \frac{b_{\rm min}^2}{b_{\rm max}^2}}$$

• Modified:

$$\int d^2 \boldsymbol{q}_{\rm T} W_{\rm New}^{(0)}(q_{\rm T}, Q) = H_0 f(x_A; \mu_c) d(z_B; \mu_c) + O\left(\left(\frac{b_{\rm min}^2}{b_{\rm max}^2}\right)^p\right)$$

$$= H_0 f(x_A; \mu_c) d(z_B; \mu_c) + O\left(\left(\frac{1}{Q^2 b_{\max}^2}\right)^p\right)$$

Generalized Y-term

• Standard steps apply to deriving a modified Y-term.

Approx. 2
$$\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$$

 \Rightarrow Approx. 2 $\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \overline{\text{Approx. 1}} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$
Use $\mathbf{b}_{\mathrm{T}} \rightarrow \mathbf{b}_{\mathrm{c}}(\mathbf{b}_{\mathrm{T}})$

Generalized W+Y Formalization

- <u>Requirements</u>
 - 1) $q_T \ll Q$ approximation shouldn't contribute for $q_T > Q$. $q_T \gg m$ approximation shouldn't contribute for $q_T \ll m$. *Guzzi,, Nadolsky, Wang (2014)*
 - 2) Integrated TMD formalism should match collinear formalism. "Unitarity": *Bozzi, Catani, de Florian, Grazzini (2006)*
 - 3) Integrated TMD parton model should match collinear parton model.
 - 4) Should recover standard W+Y treatment for $Q \rightarrow \infty$ and for $m \ll q_T \ll Q$.

Generalized Y-term

• Standard steps apply to deriving a modified Y-term.

Approx. 2
$$\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \text{Approx. 1} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$$

 $\Rightarrow \text{Approx. 2} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \overline{\text{Approx. 1}} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$
 $\Rightarrow X(q_{\mathrm{T}}/\lambda) \text{Approx. 2} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) - \overline{\text{Approx. 1}} \begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix} \end{bmatrix}$
 $\lambda = \text{hadronic mass scale} (\text{ResBos } \approx 0.5\text{-}1.5 \text{ GeV}) \text{Blue Curve}$
 $\lambda = \text{hadronic mass scale} (\text{ResBos } \approx 0.5\text{-}1.5 \text{ GeV}) \text{Blue Curve} (\text{ResBos } \approx 0.5\text{-}1.5 \text{ GeV}) \text{ResBos } (\text{ResBos } (\text{ResBos } \approx 0.5\text{-}1.5 \text{ GeV}) \text{ResBos } (\text{ResBos } \approx 0.5\text{ ResBos } (\text{ResBos } \approx 0.5\text{ Re$

• Total:

• Total:

Generalized Asymptotic Term

• Evaluation of logarithms.

- Approx. 2 Approx. 1
$$\begin{bmatrix} \Gamma(q_{\mathrm{T}}, Q) \end{bmatrix}$$

 $\alpha_s(\mu_Q)^m \ln^n \left(\frac{\mu_Q^2 b_{\mathrm{T}}^2}{b_0^2}\right)$

• Approx. 2 Approx. 1
$$\left[\Gamma(q_{\mathrm{T}}, Q) \right]$$

 $\alpha_{s}(\mu)^{m} \ln^{n} \left(\frac{\mu^{2}b_{*}(b_{c}(b_{\mathrm{T}}))^{2}}{b_{0}^{2}} \right) \rightarrow$
 $\alpha_{s}(\mu_{Q})^{m} \ln^{n} \left(\frac{\mu_{Q}^{2}b_{\mathrm{T}}^{2}}{b_{0}^{2}} + \frac{C_{1}^{2}}{C_{5}^{2}} \right)$

Generalized Asymptotic Term

• Transverse momentum space version of logarithms.

Generalized Asymptotic Term

Normalized Absolute Value of Asymptotic Term

 $C_1/C_5 \rightarrow 0$ (Collins, Soper, Sterman (1985), ResBos, etc...)

 $C_1/C_5 \rightarrow 1$ (Parisi, Petronzio (1979), Bozzi-Catani-de Florian-Grazzini ...)

Summary

- Control over Y-term is important for studies of intrinsic transverse momentum.
- Improvements over past approaches possible, especially when considering relationship between differential and inclusive quantities.
- Outlook
 - Improvements in purely collinear factorization treatment needed?
 - Extend to polarization observables.
 - Phenomenology: See N. Sato talk Thursday.