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Outline

Short introduction to lattice calculations 
‣ Challenges and current landscape 

Nucleon structure on the lattice 
‣ Benchmark quantities 
‣ Axial charge 
‣ Scalar matrix elements 

Nucleon tensor matrix elements 
‣ Nucleon tensor charge 
‣ Tensor/transversity generalized form factors 

Summary and outlook
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Lattice QCD — ab initio simulation of QCD 
– Freedom in choice of: 

– quark masses (heavier is cheaper) 
– lattice spacing a (larger is cheaper) 
– lattice volume L3×T (smaller is cheaper) 

– Choice of discretisation scheme 
e.g. Clover, Twisted Mass, Staggered, Overlap, Domain Wall 
Trade — offs and advantages for each differ

Eventually, all schemes must agree: 

– At the continuum limit: a → 0 

– At infinite volume limit L → ∞ 
– At physical quark mass
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Selected lattice simulation points used for hadron structure 
– Multiple collabs. simulating at physical pion mass 
– Size of points indicates mπL

Simulations landscape
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Sources of uncertainty 
– Statistical error:     , with MC 

samples 
– Correlation functions: 

exponentially decay with time-
separation 

– Disconnected contributions: 
stochastic error

1p
N

– Systematic uncertainties 
– Extrapolations 

a, L, mπ 
– Contamination from higher 

energy states



CaSToRC

Sources of uncertainty 
– Statistical error:     , with MC 

samples 
– Correlation functions: 

exponentially decay with time-
separation 

– Disconnected contributions: 
stochastic error

1p
N

– Systematic uncertainties 
– Extrapolations 

a, L, mπ 
– Contamination from higher 

energy states



CaSToRC

Indicative computer time requirements for 
nucleon structure

Multi-petascale to exa-scale requirements
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Reproduction of light baryon masses 
– Agreement between lattice 

discretisation schemes 
– Reproduction of experiment

Prediction of yet-to-be-observed 
charmed baryons 
– Confidence through agreement 

between lattice schemes 
– Nucleon structure… 
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Nucleon structure on the lattice 
– Lattice: moments of GPDs are readily accessible

Oµµ1µ2...µn

V =  ̄�{µiDµ1iDµ2 ...iDµn} 
Unpolarised

Oµµ1µ2...µn

A =  ̄�5�
{µiDµ1iDµ2 ...iDµn} 

Helicity

O⌫µµ1µ2...µn

T =  ̄�⌫{µiDµ1iDµ2 ...iDµn} 
Transverse

-

-

h1iu�d = gV , hxiu�d, ...

h1i�u��d = gA, hxi�u��d, ...

h1i�u��d = gT , hxi�u��d, ...
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Benchmark with: 
– Axial charge 
– Momentum fraction 
– EM form-factors

Nucleon structure on the lattice

Predict: 
– Scalar charge/σ-terms 
– Tensor charge

– Benchmark by calculating quantities well known 
experimentally 

– Confidence in prediction of less well known quantities
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Axial charge 
– Agreement towards experiment 
– Simulations very close to or at the physical quark mass

Benchmark
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Axial charge — light disconnected 
– Required for individual u- and d- contributions 
– Requires dedicated calculations for “disconnected quark loop” 
– Large statistical fluctuations in correlation functions 
– Sign is negative: brings connected result down 
– About 10% of connected value

ū�5�µu+ d̄�5�µd
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Axial charge — strange contribution 
– Contribution exclusively by “disconnected quark loop”

s̄�5�µs
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Nucleon sigma — terms

• Pion nucleon σ-term: 

• Strange σ-term: 
• Enter super-symmetric candidate particle scattering cross  

sections with nucleon (e.g. neutralino through Higgs)  

1.Direct calculation of matrix elements

�⇡N = mudhN |ūu+ d̄d|Ni
�s = mshN |s̄s|Ni

2.Through Feynman - Hellmann theorem: �⇡N = mud
@mN

@mud
�s = ms

@mN

@ms

Involves disconnected  
contributions

• Reliance on effective theories for 
dependence on mπ 

• Weak dependence on ms 
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Nucleon sigma — terms

• More results coming from the lattice using direct evaluation of the 
matrix element 

• First results from simulations directly at the physical point
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Tensor charge 
 Tensor matrix element:

hN(p0, s0)|q̄i�µ⌫q|N(p, s)i = ū(p0, s0)Kµ⌫u(p, s)

Kµ⌫ = i�µ⌫AT10(q
2) +

�[µ�⌫]

2mN
BT10(q

2) +
P̄ [µ�⌫]

m2
N

ÃT10(q
2)

P̄ =
p0 + p

2
q2 = �2[µ⌫] : Antisymmetrize � = p0 � p

At zero momentum transfer:

Kµ⌫ ! AT10(0) = h1i�q = gqT

Isovector: ūi�µ⌫u� d̄i�µ⌫d ! gu�d
T , only connected contributions

Isoscalar: , contributions from disconnected 
fermion loops

ūi�µ⌫u+ d̄i�µ⌫d ! gu+d
T
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Tensor charge

mπ=135 MeV, Twisted Mass: 
Phys.Rev. D92 (2015) 114513

Isovector tensor charge 
– Excited states increase value 
– Agreement between methods at 

ts~1.3 fm
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General agreement between lattice formulations

Tensor charge

ETMC, Phys. Rev. 
D92 (2015) 114513

LHPC,Phys. Rev.  
D86, (2012) 114509

PNDME, Phys.Rev. 
D92 (2015) 094511

RQCD, Phys. Rev. 
D91 (2015) 054501
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Disconnected contribution

Tensor charge
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Twisted Mass 
mπ=135 MeV, 
PoS LATTICE 2015 

Clover on HISQ 
mπ=220 MeV, 
PRD92, (2015) 
094511 

Two recent lattice calculations: consistent with zero
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Tensor charge

ETMC, Phys. Rev. 
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LHPC,Phys. Rev.  
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Tensor charge

↤preliminary↦ 

• Assuming negligible contribution from disconnected loops 
• Consistency between lattice formulations 
• Expect future calculations with: a → 0, L → ∞ limits
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Tensor form factors

Kµ⌫ = i�µ⌫AT10(q
2) +

�[µ�⌫]

2mN
BT10(q

2) +
P̄ [µ�⌫]

m2
N

ÃT10(q
2)

��↵h�↵
N (p0)|Oµ⌫ |��

N (p)i ! Tr[�
�i/p0 +mN

mN
Kµ⌫ �i/p+mN

mN
]

With Γ projects the nucleon’s polarization. Construct different linear 
combinations of form factors, e.g.:  

p0 = 0, p = �q, �k =
1 + �0

4
i�5�kwith: 

lead to an overdetermined set of equations for form-factors

⇧0j(�k) !
✏ijkpi
2mN

[AT10(q
2)�BT10(q

2)
E(q2)�mN

2mN
]

⇧ij(�k) ! ✏ijk[
E(q2) +mN

2mN
AT10(q

2)�BT10(q
2)
p2i + p2j
4m2

N

]



CaSToRC

Tensor form factor

• PoS LATTICE 2013 (2014) 294  
• Decreasing values with  
• Excited state investigation available at 

m⇡ ! mphys
⇡

m⇡ = 135 MeV
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Algebraic multi-grid: A. Frommer et al. SIAM J. Sci. 
Comput. 36 (2014) A1581-A1608 

Exact eigenvalue deflation

At physical quark masses 
– Mathematical algorithms for alleviating “critical slowing down” 
– Multiple right-hand-side methods for efficient multiplication of 

statistics
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Summary and outlook

Lattice QCD in new era 
• Physical pion mass simulations from a number of collaborations 
• Other systematic uncertainties coming under control 

Confidence on results for less well-known quantities: gT, tensor 
form factors 

• Three recent lattice calculations consistent 
• Two with thorough investigation of excited state contaminations 
• Valence-dominated: disconnected fermion-loop contribution 

very small (if at all) 
• Up- and down-quark contributions to gT at physical point 

 What to expect 
• Continuum and infinite volume limits 
• Longer term: effects of isospin breaking


