Tensor charge from lattice QCD

Giannis Koutsou Computation-based Science and Technology Research Centre (CaSToRC) The Cyprus Institute

ECT*, 15th April 2016, Trento

Outline

\star Short introduction to lattice calculations

Challenges and current landscape

\star Nucleon structure on the lattice

- Benchmark quantities
- Axial charge
- Scalar matrix elements

★ Nucleon tensor matrix elements

- Nucleon tensor charge
- Tensor/transversity generalized form factors

\star Summary and outlook

Lattice QCD – *ab initio* simulation of QCD

- Freedom in choice of:
 - quark masses (heavier is cheaper)
 - lattice spacing a (larger is cheaper)
 - lattice volume L³×T (*smaller is cheaper*)
- Choice of discretisation scheme

e.g. Clover, Twisted Mass, Staggered, Overlap, Domain Wall

Trade - offs and advantages for each differ

Eventually, all schemes must agree:

- At the continuum limit: $a \rightarrow 0$
- At infinite volume limit $L \rightarrow \infty$
- At physical quark mass

Simulations landscape

Selected lattice simulation points used for hadron structure

- Multiple collabs. simulating at physical pion mass
- Size of points indicates $m_{\pi}L$

Sources of uncertainty

- Statistical error: $\frac{1}{\sqrt{N}}$, with MC samples
- Correlation functions: exponentially decay with timeseparation
- Disconnected contributions: stochastic error

- Systematic uncertainties
 - Extrapolations
 - *a*, *L*, *m*_π
 - Contamination from higher energy states

CaSToRC

Sources of uncertainty

- Statistical error: $\frac{1}{\sqrt{N}}$, with MC samples
- Correlation functions: exponentially decay with timeseparation
- Disconnected contributions: stochastic error

- Systematic uncertainties
 - Extrapolations
 - a, L, m_{π}
 - Contamination from higher energy states

Multi-petascale to exa-scale requirements

Indicative computer time requirements for nucleon structure

Reproduction of light baryon masses

- Agreement between lattice discretisation schemes
- Reproduction of experiment

Prediction of yet-to-be-observed charmed baryons

- Confidence through agreement between lattice schemes
- Nucleon structure...

THE CYPRUS

CaSToRC

Nucleon structure on the lattice

- Lattice: moments of GPDs are readily accessible

Unpolarised

$$\mathcal{O}_{V}^{\mu\mu_{1}\mu_{2}...\mu_{n}} = \bar{\psi}\gamma^{\{\mu}iD^{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi$$

$$\langle 1 \rangle_{u-d} = g_V, \ \langle x \rangle_{u-d}, \ \dots$$

Transverse

$$\mathcal{O}_{T}^{\nu\mu\mu_{1}\mu_{2}...\mu_{n}} = \bar{\psi}\sigma^{\nu\{\mu}iD^{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi \quad \textcircled{\bullet} \quad - \quad \textcircled{\bullet}$$

$$\langle 1 \rangle_{\delta u - \delta d} = g_T, \ \langle x \rangle_{\delta u - \delta d}, \ \dots$$

Nucleon structure on the lattice

- <u>Benchmark</u> by calculating quantities well known experimentally
- Confidence in **prediction** of less well known quantities

Benchmark with:

- Axial charge
- Momentum fraction
- EM form-factors

Predict:

- Scalar charge/ σ -terms
- Tensor charge

Nucleon structure on the lattice

- <u>Benchmark</u> by calculating quantities well known experimentally
- Confidence in **prediction** of less well known quantities

Benchmark with:

- Axial charge
- Momentum fraction
- EM form-factors

Predict:

- Scalar charge/o-terms
- Tensor charge

Axial charge

- Agreement towards experiment
- Simulations very close to or at the physical quark mass

CaSToRC

 $\bar{u}\gamma_5\gamma_\mu u + \bar{d}\gamma_5\gamma_\mu d$

Axial charge – light disconnected

- Required for individual u- and d- contributions
- Requires dedicated calculations for "disconnected quark loop"
- Large statistical fluctuations in correlation functions
- Sign is negative: brings connected result down
- About 10% of connected value

$\bar{s}\gamma_5\gamma_\mu s$

Axial charge – strange contribution

- Contribution exclusively by "disconnected quark loop"

Nucleon sigma – terms

- Pion nucleon σ -term: $\sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle$
- Strange σ -term: $\sigma_s = m_s \langle N | \bar{s}s | N \rangle$
- Enter super-symmetric candidate particle scattering cross sections with nucleon (e.g. neutralino through Higgs)

χ

н

χ

CaSToRC

Nucleon sigma – terms

- More results coming from the lattice using direct evaluation of the matrix element
- First results from simulations directly at the physical point

Tensor matrix element:

$$\langle N(p',s')|\bar{q}i\sigma_{\mu\nu}q|N(p,s)\rangle = \bar{u}(p',s')K^{\mu\nu}u(p,s)$$
$$K^{\mu\nu} = i\sigma^{\mu\nu}A_{T10}(q^2) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}B_{T10}(q^2) + \frac{\bar{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\tilde{A}_{T10}(q^2)$$
$$[\mu\nu]: \text{Antisymmetrize} \quad \Delta = p'-p \qquad \bar{P} = \frac{p'+p}{2} \qquad q^2 = \Delta^2$$

At zero momentum transfer:

$$K^{\mu\nu} \to A_{T10}(0) = \langle 1 \rangle_{\delta q} = g_T^q$$

Isovector: $\bar{u}i\sigma^{\mu\nu}u - \bar{d}i\sigma^{\mu\nu}d \rightarrow g_T^{u-d}$, only connected contributions Isoscalar: $\bar{u}i\sigma^{\mu\nu}u + \bar{d}i\sigma^{\mu\nu}d \rightarrow g_T^{u+d}$, contributions from disconnected fermion loops

General agreement between lattice formulations

CaSToRC

Disconnected contribution

 $\chi_N(\vec{x}_s, t_s)$

Two recent lattice calculations: consistent with zero

 $\leq \mathcal{O}(\vec{x}_{\text{ins}}, t_{\text{ins}})$

- Assuming negligible contribution from disconnected loops
- Consistency between lattice formulations
- Expect future calculations with: $a \rightarrow 0, L \rightarrow \infty$ limits

Tensor form factors

$$\Gamma^{\beta\alpha}\langle\chi_N^{\alpha}(p')|\mathcal{O}^{\mu\nu}|\chi_N^{\beta}(p)\rangle \to \operatorname{Tr}\left[\Gamma\frac{-ip'+m_N}{m_N}K^{\mu\nu}\frac{-ip+m_N}{m_N}\right]$$
$$K^{\mu\nu} = i\sigma^{\mu\nu}A_{T10}(q^2) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}B_{T10}(q^2) + \frac{\bar{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\tilde{A}_{T10}(q^2)$$

With Γ projects the nucleon's polarization. Construct different linear combinations of form factors, e.g.:

$$\Pi^{0j}(\Gamma_k) \to \frac{\epsilon^{ijk} p_i}{2m_N} [A_{T10}(q^2) - B_{T10}(q^2)] \frac{E(q^2) - m_N}{2m_N}]$$
$$\Pi^{ij}(\Gamma_k) \to \epsilon^{ijk} [\frac{E(q^2) + m_N}{2m_N} A_{T10}(q^2) - B_{T10}(q^2)] \frac{p_i^2 + p_j^2}{4m_N^2}]$$

with:
$$p'=0, \ p=-q, \ \Gamma_k=rac{1+\gamma_0}{4}i\gamma_5\gamma_k$$

lead to an overdetermined set of equations for form-factors

Tensor form factor

- PoS LATTICE 2013 (2014) 294
- Decreasing values with $m_\pi o m_\pi^{
 m phys}$
- Excited state investigation available at $m_{\pi}=135~{
 m MeV}$

Algebraic multi-grid: A. Frommer et al. SIAM J. Sci. Comput. **36** (2014) A1581-A1608 Exact eigenvalue deflation

At physical quark masses

- Mathematical algorithms for alleviating "critical slowing down"
- Multiple right-hand-side methods for efficient multiplication of statistics

Summary and outlook

\star Lattice QCD in new era

- Physical pion mass simulations from a number of collaborations
- Other systematic uncertainties coming under control
- ★ Confidence on results for less well-known quantities: g_T, tensor form factors
 - Three recent lattice calculations consistent
 - Two with thorough investigation of excited state contaminations
 - Valence-dominated: disconnected fermion-loop contribution very small (if at all)
 - Up- and down-quark contributions to g_T at physical point
- ★ What to expect
 - Continuum and infinite volume limits
 - Longer term: effects of isospin breaking

