Polarized Drell-Yan at Fermilab

This work is supported by

Current and Future D-Y Program at FNAL

Unpolarized Beam and Target w/ SeaQuest detector

- E-906: 120 GeV p from Main Injector on LH_2, LD_2 , C,Fe,W targets \rightarrow high-x Drell-Yan
- Science data started in March 2014
 - run for 3 yrs
 - preview

Polarized Beam and/or Target w/ SeaQuest detector

- → development of **high-luminosity** facility for **polarized Drell-Yan**
- E-1039: SeaQuest w/ pol NH₃ target (2018-2019)
 - probe sea quark distributions
- E-1027: pol p beam on (un)pol tgt (2020-2021?)

Sivers sign change (valence quark)

10% of available beam to SeaQuest / 90% to neutrino program

Data From FY2014

SeaQuest Cross Section Ratio (Preview)

- data presented by Bryan Kerns at April 2015 APS
- Caution: rate-dependence not included (still being studied)

SeaQuest Leading Order extraction (Preview)

- anticipate total of 1.4 × 10¹⁸ protons by July 2016
- approved for 5 × 10¹⁸ pot

02/29

2016

11/19 03/16 07/10 11/04 2014 2015 2015 2015

07/25

2014

2014

SeaQuest Nuclear Dependence (Preview)

- data Presented by Bryan Dannowitz at April 2015 APS
- no antiquark enhancement apparent
- 10% of anticipated statistical precision
- increased detector acceptance at large-x_T to come (new D1 chamber)

 Preliminary 2015 data set will be presented by Bryan Dannowitz at April 2016 APS – stay tuned

- use current SeaQuest setup, a polarized proton target, unpolarized beam
- add third magnet SM0 ~5m upstream
 - \rightarrow improves dump-target separation
 - \rightarrow reduces overall acceptance
- Current status
 - magnet system is finished and working
 - refrigerator is finished and tested (at 1K)
 - NMR system is finished and working
 - mechanical design completed
 - Ammonia being irradiated at NIST
- supported with Los Alamos LDRD funds

full systems test in April 11-22, 2016 installation in summer 2017

E1039 Target and Running Conditions

Target

- Field: 5T @ 1K
- Max Beam Current: 1*10¹³ p/spill ;120 GeV (might be limited by pump cycling)
- Elliptical shape: 1.9 cm x 2.1 cm (x,y), l:7.9cm (z)
- $\rho = 0.82 \text{ g/cm}^3 \text{ frozen NH}_3$
- Packing Fraction = 0.6
- Dilution Factor ~ $3/17 \text{ NH}_3$
- 5.1 g/cm² (NH₃) + 0.44 g/cm² He
- Polarization <80%>
- Horn irradiates 2 targets, plus one empty target, one C disk

Running Conditions: (running length depends on rad damage)

- Reverse Polarization through microwave ~8 hrs
- Reverse magnet field of FMAG and KMAG
- Reverse magnetic field of target

4 days

Sivers Function and Spin Crisis – O cannot exist w/o quark OAM

- describes transverse-momentum distribution of unpolarized quarks inside transversely polarized proton
- captures non-perturbative spin-orbit coupling effects inside a polarized proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

$$\frac{1}{2}\Delta\Sigma \approx 25\%; \quad \Delta G \approx 20\%$$

$$\Delta\Sigma = \Delta u + \Delta d + \Delta s$$

$$L \approx \text{ unmeasured}$$

How measure quark OAM ?

 $f_{1T}^{\perp} =$

- GPD: Generalized Parton Distribution
- TMD: Transverse Momentum Distribution

$$A_{N} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \stackrel{?}{\Rightarrow} 0$$
$$A_{N}^{DY} \propto \frac{u(x_{b}) \cdot f_{1T}^{\perp,\bar{u}}(x_{t})}{u(x_{b}) \cdot \bar{u}(x_{t})}$$

Projected Statistical Precision with a Polarized Target at (E-1039)

 Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest

Statistics shown for two calendar years of running:

- L = 7.2 *10⁴² /cm² ↔ POT = $2.8*10^{18}$ - P = 85%

- existing SIDIS data poorly constrain sea-quark Sivers function (Anselmino)
- significant Sivers asymmetry expected from meson-cloud model (Sun & Yuan)
- first Sea Quark Sivers Measurement
- determine sign and value of u Sivers distribution

If $A_N \neq 0$, major discovery: "Smoking Gun" evidence for $L_{\overline{u}} \neq 0$

Further Plans with Polarized Targets (E-1039')

- Probe d Sivers Asymmetry with a polarized ND₃ target at SeaQuest
 - SeaQuest only place to measure d-bar (explore during E1039)
 - measure Sivers asymmetry for pp and pD and take ratio
 - requires measuring p and "n" in parallel to control systematic errors
 - microwave irradiates both targets at the same time
 - one cell NH_3 , the other ND_3

Target holder

Probe **Tensor** Polarization Deuteron (40% - 50%)

Let's Polarize the Beam at Fermilab (E-1027)

The Plan:

- Use fully understood SeaQuest Spectrometer
- Add polarized beam

 $\left. f_{17}^{\perp} \right|_{\rm CFTS} = -f_{17}^{\perp} \right|_{DY}$

- Measure sign-change in Sivers Function:
 - → QCD (and factorization) require sign change
 - → major milestone in hadronic physics (HP13)
- Fermilab (best place for polarized DY):
 - \rightarrow very high luminosity, large x-coverage (primary beam, fixed target)
- Cost Est.: \$6M +\$4M Contingency & Management = \$10M (in 2013)

Planned(/running) Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	x _b or x _t	Luminosity (cm ⁻² s ⁻¹)	$A_{_{T}}^{\sin\phi_{_{S}}}$	P_{b} or P_{t} (f)	rFOM#	Timeline
COMPASS (CERN)	π^{\pm} + p [↑]	160 GeV √s = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2015-2016, 2018
PANDA (GSI)	p + p [↑]	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2018
PAX (GSI)	$\mathbf{p}^{\uparrow} + \overline{\mathbf{p}}$	collider $\sqrt{s} = 14$	x _b = 0.1 – 0.9	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020?
NICA (JINR)	$\mathbf{p}^{\uparrow} + \mathbf{p}$	collider √s = 26	$x_{b} = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2018
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider √s = 510	x _b = 0.05 - 0.1	2 x 10 ³²	0.08	P _b = 60%	1.0 x 10 ⁻³	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	$\sqrt{s} = 200$ $\sqrt{s} = 510$	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	P _b = 60% P _b = 50%	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2017
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0- 0.2*	P _t = 85% f = 0.176	0.15	2018-2019
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	$x_{b} = 0.35 - 0.9$	2 x 10 ³⁵	0.04	P _b = 60%	1	2020

⁺8 cm NH₃ target / $\$ [§] L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / #rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

W. Lorenzon (U-Michigan) 3/2016

Expected Precision from E-1027 at Fermilab

Probe Valence-quark Sivers Asymmetry with a polarized proton beam at SeaQuest

- same as SeaQuest
- luminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA)
- 3.2 X 10¹⁸ total protons for 5 x 10⁵ min: (= 2 yrs at 50% efficiency) with $P_b = 60\%$

Can measure not only sign, but also the size & probably shape of the Sivers function! as well as TMD evolution!

A Novel, Compact Siberian Snake for the Main Injector

Differences compared to RHIC

- Most significant difference: Ramp time of Main Injector < 0.7 s, at RHIC 1-2 min</p>
 - warm magnets at MI vs. superconducting at RHIC
 - → pass through all depolarizing resonances much more quickly
- Beam remains in MI ~2 s, in RHIC ~8 hours
 - extracted beam vs. storage ring
 - much less time for cumulative depolarization
- Disadvantage compared to RHIC no institutional history of accelerating polarized proton beams
 - Fermilab E704 had polarized beams through hyperon decays

The Path to a polarized Main Injector

Stage 1 approval from Fermilab: 14-November-2012

- PAC request: detailed machine design and costing using 1 snake in MI
- Collaboration with A.S. Belov at INR and Dubna to develop polarized source
- During 2013 2014:
 - set up Zgoubi spin-tracking package (M. Bai, F. Meot, BNL)
 - \rightarrow single particle tracking, emittance, momentum spread of particles
 - → conceptual design that works at least for a perfect machine perfect magnet alignment, perfect orbits, no momentum spread, etc
 - → but slow and limited support: difficulties implementing orbit errors, quadrupole mis-alignments/rolls, ramp rates
 - Fermilab AD support: 2015-2016
 - Meiqin Xiao from AD set up PTC (Etienne Forest, KEK)
 - → repeated Zgoubi work in 1 month
 - \rightarrow "easy" to include orbit errors, quadrupole mis-alignments/rolls, ramp rates
 - support for one year
 - → plan to complete simulations
 - → go back to PAC

Simulation of final polarization as function of Energy

Point-like snake in correct location, actual ramp rate for acceleration.

Polarizations with magnet field error and misalignment (from magnet database and survey group), corrected (for SeaQuest running conditions)

Final polarization: > 90%

 ε_{max} = 20 π mm.mrad in y plane and Δp =1.25*10⁻³ in longitudinal plane

Simulation of final polarization as function of Energy

Point-like snake in correct location, actual ramp rate for acceleration.

Polarizations with magnet field error and misalignment, partially corrected

Final polarization: < 10%

 ε_{max} = 20 π mm.mrad in y plane and Δp =1.25*10⁻³ in longitudinal plane

Exploring the Dark Side of the Universe

- Dark sector could interact with the standard model sector via a hidden gauge boson (A' or "dark photon" or "para photon" or "hidden photon")
- Dark photons can provide a portal into the dark sector
- Dark photons could couple to standard model matter with $\alpha' = \alpha \epsilon^2$

A' produced via a loop mechanism

B. Holdom, PLB **166** (1986) 196 J. D. Bjorken et al, PRD **80** (2009) 075018

Possible Mechanisms for producing A' at SeaQuest

Proton Bremsstrahlung

Drell-Yan process

SeaQuest A' search strategy

Classic Beam Dump Experiment

- A' generated by η decay and/or proton Bremsstrahlung in the Iron beam dump
- A' could travel a distance I_o without interacting
- A' decays into di-leptons
- Reconstructed di-lepton vertex is displaced, downstream of the target in the beam dump
- Minimal impact on Drell-Yan program

run parasitically during E906

A' sensitivity region for SeaQuest

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{A'}}\right)^2$$

- J. D. Bjorken et al, PRD 80 (2009) 075018
- E_0 = energy of the A'
 - ➡ E₀ = 5 20 GeV for η decay
 - E₀ = 5 110 GeV for Proton Bremsstrahlung
- N_{eff} = no. of available decay products
 - → N_{eff} = 2
- I_0 = distance that A' travels before decaying
 - \rightarrow I₀ = 0.17m 5.95m
- ε = coupling constant between standard model and dark sector
- $m_{A'}$ = mass of A'

η decay: limited to A' mass less than the meson mass

Polarized Proton Beams and Searches for Dark Forces Searches for a dark photon also limit other possibilities Parity violation studies could prove key

$$\mathcal{L}_{\text{darkZ}} = -(\varepsilon e J_{\text{em}}^{\mu} + \varepsilon_Z \frac{g}{2\cos\theta_W} J_{\text{NC}}^{\mu}) Z_{d\,\mu}$$

[Davoudiasl, Lee, Marciano, 2014]

If the A' is a dark Z, then ...

The dilepton yield can change with proton polarization: the asymmetry can be O(1)!

E-1027, E-1039 (and Beyond)

	Beam	Target	Favored	Physics Goals					
POI.		P01.	Quarks	(Siver	s Func				
				sign change	size	shape	L _{sea}	A', Z _d	
$\begin{array}{c} \textbf{E-1027} \\ p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X \end{array}$	~	×	valence	~	~	~	×	~	
$\begin{array}{c} \textbf{E-1039} \\ p \ p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \end{array}$	×	~	sea	×	~	(🗸)	~	~	
E-10XX $p^{\uparrow} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$ $\vec{p} \ \vec{p} \rightarrow \mu^{+} \mu^{-} X$	~	~	sea & valence	Transversity (q q_bar), Helicity, Other TMDs					

Double-Spin Drell-Yan

 \rightarrow rich, high-lumi spin-physics: complementary to RHIC and JLab

Drell-Yan Physics Program at Fermilab

Sea Quarks of the Target

- dbar/ubar
- Sea quark EMC effect

Not discussed:

- Quark sea absolute magnitude
- Partonic Energy Loss
- J/ψ Nuclear Dependence

Transverse Spin Physics

- Sivers and OAM of Sea Quarks
- Sivers and QCD on Valence Quarks (sign change))

Dark Photons?

Thank You