Hall A Compton Polarimeter at 11GeV G. B. Franklin Carnegie Mellon University

- 1. Compton Scattering Polarimetry
 - General Considerations
 - Complications and Systematic Errors
- 2. JLab Hall A Compton Photon Calorimeter
 - GSO Performance (Simulations and benchmarks)
 - Integrating DAQ
- 3. Systematic Considerations
- 4. Preparing for 11 GeV

Hall A Compton 6 GeV Upgrade Team: M. Friend, D. Parno, F. Benmokhtar, A. Camsonne, G.B. Franklin, R. Michaels, S. Nanda, K. Paschke, B. Quinn, P. Souder

Hall A Compton 11 GeV Team: J. Benesch, A. Camsonne, D. Dutta, J.C. Cornejo, G.B. Franklin, C. Gai, D. Gaskill, J. Hoskins, A. Johnson, J. Mammel, R. Michaels, K. Paschke, B. Quinn, M. Shabastari, R. Spies, A. Sun, L. Thorne...

1. Compton Scattering Polarimetery

Electron beam passes through polarized photon beam Spin-dependence of Compton scattering -> analyzing power

Unpolarized Cross Section

Very forward peaked (GeV electrons on eV photons)

Compton Analyzing Power

$$A_l(\rho) \equiv \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} = \frac{2\pi r_0^2}{d\sigma/d\rho} a(1 - \rho(1 + a)) \left[1 - \frac{1}{(1 - \rho(1 - a))^2}\right]$$

- Peak analyzing power 1% to 35%
- Strong dependence on scattered photon energy

λ=1064nm, ω₀=1.165 eV

λ=532nm, ω₀=2.330 eV

Increases ~linearly with beam energy and photon energy.

2. JLab Hall A Compton Polarimeter

- Experimental Challenges
 - Thresholds and non-linearities a problem (Strong energy dependence of A_I)
 - Large dynamic range of photon energies (Compton edge prop E², varies from ~20 MeV to ~3100 MeV)
- Measure electron and/or photon asymmetries
 - Scattered electrons detected in microstrip
 - Three possible photon asymmetries measurements
 - 1. Energy-dependent asymmetry (Record individual events)
 - 2. Integrate entire PMT signal (FADC Accumulator 0)
 - 3. Integrate signal above a threshold (FADC Accumulator 2) ⁵

Hall A Compton Photon Calorimeter

- Few GeV Running Single GSO crystal (Hitachi Chemical) 0.5% Ce-doped Gd₂SiO₅ 6 cm diameter x 15 cm length
- Preparation Higher Energy Running 4-element PbWO4 array 6 cm x 6 cm x 20 cm

 Flash ADC integrates Compton signal Customized Struck SIS3320 FADC No threshold, Dead-timeless
1 Data word per 1/30 sec helicity window Auxiliary monitoring info

3) Systematic Considerations

Energy Weighted Asymmetry Avoids Thresholds

$$E^{\pm} = LT \int_{0}^{E_{\text{max}}} \varepsilon(E) E \frac{d\sigma}{dE} (E) \left(1 \pm P_{e} P_{\chi} A_{l}(E)\right) dE$$
$$A_{Exp} = \frac{E^{+} - E^{-}}{E^{+} + E^{-}} \qquad \text{Longitudinal Compton Asymmetry}$$

Actual Asymmetry Weighted by Detector Signal

$$S^{\pm} = LT \int_{0}^{E_{\text{max}}} s(E) \frac{d\sigma}{dE} (E) \left(1 \pm P_{e}P_{\gamma}A_{l}(E)\right) dE$$

Average detector signal for photon energy *E*

$$A_{Exp} = \frac{S^{+} - S^{-}}{S^{+} + S^{-}} = P_{e}P_{\gamma} \frac{\gamma \int_{0}^{E_{\max}} A_{l}(E)s(E)\frac{d\sigma}{dE}(E)dE}{\int_{0}^{E_{\max}} s(E)\frac{d\sigma}{dE}(E)dE} = P_{e}P_{\gamma}A_{lS}$$

8

Energy Weighted Asymmetry Avoids Thresholds

Energy Weighted Statistics

$$\begin{bmatrix} \sigma_{s} \\ s \end{bmatrix}^{2} = \frac{\int_{0}^{E_{m}} dEE^{2} dN/dE}{\left[\int_{0}^{E_{m}} dEE dN/dE\right]^{2}} = \frac{\int_{0}^{1_{m}} d\rho \rho^{2} dN/d\rho}{\left[\int_{0}^{1_{m}} d\rho \rho dN/d\rho\right]^{2}}$$
$$\frac{\sigma_{s}}{s} = 1.2 \frac{1}{\sqrt{N}} \qquad \text{(Using Compton shape for dN/d\rho)}$$

100 kHz counting rate → Statistical accuracy in a few hours

Systematic Considerations Dominate

$$S^{\pm} = LT \int_{0}^{E_{\text{max}}} s(E) \frac{d\sigma}{dE} (E) \left(1 \pm P_{e}P_{\gamma}A_{l}(E)\right) dE$$

Function of detector and electronics response

Detector Response: GEANT4 Simulations Performed Vahe Mamyan & Megan Friend

Shower Generation 200 MeV Photon Event Optical Photon Tracking 11 30 MeV Photon Event

GEANT produces GSO average response, s(E)

Systematic Considerations

PMT Linearity

Mapped with "Mini-Megan" 2-LED Pulser System Simulated GSO pulse Measures PMT/Base linearity Monitors gain shifts

PMT base is designed to maximize linearity Tuned for actual PMT and photon range

Remaining non-linearity folded into Monte Carlo

Analysis of prescaled scattering event triggers

Verifies model of calorimeter response

For each helicity period, FADC Data-stream includes: Signal Sum (Main analysis) Prescaled Integrated Triggered GSO Pulses Random Sampled FADC Sample Periods

Prescaled triggered data can be used to measure polarization

Asymmetries from FADC Accumulator

(Signal integrated over helicity window)

(a) (b) Figure 4.25: A typical Compton slug for (a) laser-right and (b) laser-left, where the asymmetry is positive after being scaled as in Eq. 4.58. Each data point is a separate laser-cycle including local background subtraction. Error bars are statistical as defined in Sec. 4.5.3.1, and the solid line is a constant fit to the data. Plots of all of the Compton slugs, as well as a table of the measured asymmetry and statistical error for each slug, are given in Appendix A.

Ph.D. Thesis of M. Friend

HAPPEX III Polarization Estimated Accuracy

From: M. Friend et al., Upgraded photon calorimeter...

	racy
et al., Upgraded photon calorimeter	New tech
Systematic Errors	
Laser Polarization	0.80%
Signal Analyzing Power:	
Nonlinearity	0.30%
Energy Uncertainty	0.10%
Collimator Position	0.05%
Analyzing Power Total Uncertainty	0.33%
Gain Shift:	
Background Uncertainty	0.31%
Pedestal on Gain Shift	0.20%
Gain Shift Total Uncertainty	0.37%
Total Uncertainty	0.94%

4. Preparing for 11 GeV

Comparison to HAPPEX III Run

- Compton edge: 204 MeV -> 3.1 GeV GSO crystal -> PbWO4 crystal
- Analyzing power increase x 6.4
- Synchrotron radiation background goes as E⁴ Modify chicane dipoles
- Reduce uncertainty in laser polarization

Compton Laser Status

Initially plagued by lower than expected gain after restoring cavity locking with moderate reflectivity mirrors → Excessive loss – problems with mirrors

Replaced moderate *R* mirrors with high *R* (early 2015)

- → Was able to routinely achieving more than 4 kW of stored power
- → More recently, initial green power has been reduced, so stored power is 2 kW – but cavity gain remains high

New Compton Polarization Optimization

Polarization in cavity optimized by scanning full input polarization phase space and measuring reflected power \rightarrow requires new (rotating) HWP, power meters

- \rightarrow Controls updated, power meters installed
- \rightarrow HWP installed, scanning and fitting routines developed

See talk by Dave Gaskell Tuesday afternoon (Hall A Collaboration Meeting)

Integrated signal analyzing power (GEANT4 for PbWO4, green laser)

Analyzing Power at Higher Energies

"PbWO4 Compton Polarimeter Calorimeter"

$\mathsf{A}_{\rm S} = 0.0177 E - 0.00057 \ E^2$

Alexa Johnson (unpublished)

Results from

E (GeV)	As
1.0	1.7%
3.5	5.5%
11.0	12.5%

Figure 11: Asymmetry vs. ρ_{dep} for PbWO4 with beam energies of 1 - 11 GeV. The upper left insets show the signal-weighted integrated asymmetries.

Normalized Asymmetry vs. Beam Energy

Figure 12: Normalized Asymmetry vs. E_{beam} for PbWO4 with beam energies 1-11 GeV. The asymmetry can be expressed as $A(E) = 0.0177E - 0.00057E^2$ where E is the electron beam energy in GeV. 21

To reach 1% accuracy in analyzing power

- Need to fold in PMT non-linearity
- Need to include higher order terms (not yet done)

Higher order diagrams Denner & Dittmaier Nucl. Phys. B540 (1999) ~0.3% correction to A_1 at 3.5 GeV beam energy Increases with energy

Synchrotron Radiation Background Solved?

0.1

0.2

0.3

0.4 0.5

Ey (MeV)

0.6

0.7 0.8

0.9

Sprint 2015 Test Run and DAQ tests

Short test of Compton, April 2015

Triggered Sample Events

Prescaled Counts per MPS (Laser On and Laser Off)

Triggered Sample Events

Prescaled Counts per MPS (Laser On and Laser Off)

Integrated Signal S₀ (FADC Accumulator 0)

Spring 2005 Test Run Beam 2.06 GeV, 5 μA PbWO Crystal No Pb synchrotron shielding HAPPEX III Beam 3.84 GeV, >70 μA GSO Crystal Pb synchrotron shielding

Acc0 Asymmetry

Raw prelim analysis shows A=3.5% But large asymmetry with laser off Follow up tests show helicity-bit correlated false asymmetry Solution: "Pseudo-Delayed" helicity reporting

- 1. "Standard" delayed helicity effects everone
- 2. Delay-to-end-of-helicity window implemented
- 3. Reduces false helicity-bit correlation factor of 10
- 4. Estimate 0.4% false asymmetry
- 5. Compare to 12% analyzing power at 11 GeV

Conclusion

- Accuracy of 1% has been achieved in HAPPEX/Prex
- Significant improvements made
 - Improved determination of photon polarization
 - Reduction in Synchrotron Radiation (Particularly for high electron beam energy)
- Prompt helicity reporting probably OK (use pseudo-delay to Hal IA Compton VME)
- Laser/cavity working- but some reliability issues

Backup

Helicity-Bit Correlated Pedestal Shift

Run	S⁺-S⁻ (rau)	
Spring 2015: Data Run	0.0200 ±0.0010	Run 1288
Revamped DAQ V1: Pulser	0.0489 ±0.0003	VME NIM/ECL
Revamped DAQ V2: Pulser	0.0140 ±0.0003	VME ECL only
Revamped DAQ V3: Pulser	0.0015 ±0.0002	Pseudo delayed Helicity reporting
2015 Run Delayed Hel. Analysis	0.0007 ±0.0004	Simulated full delayed reporting

Projected False Asymmetry (compare to 12% analyzing power at 11 GeV)

Run	S⁺+S⁻ (rau)	A_false
Spring 2015: Data Run	0.20	10%
Assuming Pseudo-Delayed Reporting	0.20	0.75%
Expected Increased Signal Amplitude	0.40	0.38%
Increased counting rate ?	?	? 31

Crystal Properties

	GSO	PbWO4	BGO	CeF ₃	BriLanCe 380	PreLude 420
Density (g/cm ³)	6.70	8.30	7.13	6.16	5.29	7.1
Rad Length (cm)	1.39	0.90	1.12	1.68	~1.9	1.2
Moliere Radius (cm)	2.4	2.0	2.3	2.6	?	?
Decay time (ns)	~80	50	300	30	16	41
Light output (% Nal)	45%	0.4%	9%	6.6%	165%	84%
photoelectrons (# / MeV)	850	8	170	125	3150	1600

Systematic Considerations

Geometry and Alignment

If misaligned, collimators can distort energy spectrum at low end

1mm tungsten radiators/ scintillators Used for horizontal and vertical scans $\frac{33}{33}$

Example Compton Edge and Analyzing Powers

	ω ₀ =	1.165 eV ((IR)	ω_0 = 2.33 eV (green)		
E_{e}	а	$\omega_{\sf max}$	A _{max}	а	ω_{max}	A _{max}
(MeV)		(MeV)			(MeV)	
$1,\!375$.976	33	.024	.953	64	.048
$2,\!750$.953	129	.047	.911	246	.093
$5,\!500$.911	492	.093	.836	903	.177
$11,\!000$.817	$1,\!806$.177	.718	$3,\!101$.320

Verification of Detector Response Simulations

Tests at Duke's HIGS facility

"Monoenergetic" photons

20, 22, 25, 30, & 40 MeV

See D. Parno et. al. NIM A (2013) DOI 10.1016

(e)

Energy (raus)

Analysis of Signal-Integrated Data (Accumulator 0)

Time-Dependent Systematics & Background

Electron Beam Helicity Flipped at ~30 Hz (pseudo-random) Fabry-Perot Cavity Laser Cycle:

60 sec Locked on Right Circular Polarization30 sec Unlocked (used for background subtraction)60 sec Locked on Left Circular Polarization30 sec Unlocked

Significant background

Synchrotron Radiation and Beam-Halo Bremsstrahlung Synchrotron Radiation ~ E^4 ... potential problem for 12 GeV running

