

DVCS Calorimeter Analysis : E12-06-144 (Fall 2014/Spring2015)

DVCS Meeting 18 January 2016

Mongi Dlamini

Outline:

- Elastic Calibration(s)
- Extraction of reference pulses
- Coincidence time optimization
- Resolution studies with high current and pileup

Experiment setup

Calibration Procedure

 $\rightarrow\,$ The goal is to extract energy conversion coefficients and hence adjust the HV for all blocks accordingly

 \rightarrow We define a χ^2 and minimize it to get 208 linear equations

$$-\chi^2 = \sum_{j=0}^{Nevents} \left(E_j - \sum_{i=0}^{Nblocks} (C_i A_i^j) \right)^2$$

* E_j: electron energy for event j, from HRS,
* A^j: signal amplitude for block i,
* C_i: calibration coefficient for block i.

$$\sum_{i}^{Nblocks} \left(\sum_{j=1}^{Nevents} A_j^k A_j^i \right) C_i = \sum_{j=1}^{Nevents} E_j A_j^k$$

 \rightarrow We invert 208 by 208 matrix to obtain coefficients

Calibration results (Spring 2015)

DVCS 2016

Comparing calibration coefficients

 \rightarrow comparing coefficients to check consistency

$$\frac{C_2}{C_1} = \left(\frac{V_1}{V_2}\right)^{\beta} \longrightarrow 1 = \frac{C_1}{C_2} \left(\frac{V_1}{V_2}\right)^{\beta}$$

Comparison of calibration coeffients (WF-Fall1/Fall2)

Comparison of calibration coeffients (WF-Fall2/Spring15)

Calibration Summary

	Calibration	Beam energy (GeV)	Energy resolutio n(%)	Angular res.(θ) [mrad]	Angular res.(Φ) [mrad]	Θ Offset (mrad)	Φ offset (mrad)
2020	Fall 1 07 Dec' 14	7.3	4.1	1.1	1.5	-1.0	0.9
T Res	Fall 2 09 Dec' 14	7.3	3.5	1.2	1.4	-1.4	1.0
	Spring 15 23 March 15	9.6	3.0	1.0	1.1	1.1	1.1
E.							

Energy resolution per block Calorimeter elastic calibration

Energy Resolution from elastic (GeV) at 5GeV

Energy Resolution from elastic (GeV) at 7GeV

Signal analysis: Reference shapes

- \rightarrow Reference pulses are extracted from elastic data (clean)
- \rightarrow A reference pulse is created for each block

 \rightarrow A selection of signals with a high response from the PMTs is done for candidate pulses

 \rightarrow An iterative averaging in both time and amplitude is done for all selected pulses in a block

Ref shape 3

FWHM(ns)

Signal analysis: Reference shapes

 \rightarrow Can we use just one reference shape?

FWHM per calorimeter block

Signal fall times per block

 \rightarrow The goal was to reduce the dispersion of the coincidence time For each calorimeter block to less than 1 ns standard deviation

 \rightarrow A narrow coincidence window will close out many accidentals and improve the energy resolution of the calorimeter

 \rightarrow Corrections were applied to consider different calorimeter block positions, cable lengths, electron and light propagation distances in HRS. These include:

- \rightarrow Time per calorimeter block
- → ARS stop trigger jitter
- → S2m scintillator paddle centering
- \rightarrow Light propagation in S2m scintillators
- \rightarrow Electron path in HRS

ARS stop trigger jiiter

 $\rightarrow\,$ The ARS timing is not uniquely defined by the S2m arrival

 $\rightarrow\,$ correction for the time difference between the S2m and the ARS stop

 $T_{corr} = t_{av} + tdcval[3] - tdcval[7]) /10 (ns)$

S2m scintillator paddles centering

Time shift for centering paddles

Slope (ns/m)

0

-4

-5

-6

-7

0

٥

2

Δ

6

8

10

12

14

16

S2m paddle number

Signal analysis: Coincidence time Optimization

Light propagation in S2m

→ Based on a linear y position vs. time correlation: $T_{corr} = m*y + c$

Y position-calo time slopes

Electron path length in HRS

→ Based on a linear y position vs. time correlation: $T_{corr} = m^*\theta + c$

theta-calo time slopes

theta-calo time intercepts

Summary plot for dispersion per block

Signal analysis: Higher current and energy resolution

 \rightarrow Analysis to study the effect of increasing beam current on the Calorimeter resolution.

 $\rightarrow\,$ in this analysis, we went beyond the standard 1 cluster and

1 pulse fitting to consider the possibility of pileup and increasing Significance of 2 clusters.

 \rightarrow A sample of the data was considered for this analysis

Signal analysis: Higher current and energy resolution

All events 10µA

One to Two cluster analysis, Missing mass

All events 5µA h1clus Entries All events 5µA counts/µ Mean accidentals 5µA RMS

Signal analysis: Higher current and energy resolution

Two cluster analysis, pi0 invariant mass

No big loss of resolution observed between 10 and 5 micro Amperes

Signal analysis: Higher current and energy resolution

 \rightarrow Summary plot for 1 pulse and 2 pulse analysis showing the resolution Of the pi0 invariant mass distribution across all 3 beam currents

Conclusions:

- \rightarrow New reference shapes extracted and implemented
- \rightarrow Time corrections were done for one kinematic
- → Elastic calibrations were analyzed
- \rightarrow Consideration about ADC calibration??
- \rightarrow Pileup studies conducted and growing pileup observed At higher running current