DVCS collaboration meeting

M. Defurne

CEA Saclay - IRFU/SPhN

January 18th 2016

The first Rosenbluth separation of π^0 electroproduction

We need to separate σ_L and σ_T to confirm the large transverse contribution.

$$\begin{split} \frac{d^4\sigma}{dt d\phi dQ^2 dx_B} &= \frac{1}{2\pi} \Gamma_{\gamma^*}(Q^2, x_B, E_e) \Big[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \\ &\sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{TL}}{dt} cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt} cos(2\phi) \Big], \end{split}$$

Setting	E (GeV)	Q^2 (GeV ²)	x_B	ϵ
2010-Kin1	(3.355; 5.55)	1.5	0.36	(0.52; 0.84)
2010-Kin2	(4.455; 5.55)	1.75	0.36	(0.65; 0.79)
2010-Kin3	(4.455; 5.55)	2	0.36	(0.53; 0.72)

Rosenbluth separation: Measure $\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}$ for two different ϵ -values at same Q^2 , x_B and t'.

Ensure the kinematics of the extraction

To limit the error induced by a slight mismatch between the averaged values of Q^2 and x_B between the two beam energies:

• We apply a 2D-cut on Q^2 and x_B to match the phase space of both beam energies.

• Iteration in the extraction by fitting kinematical dependencies of σ_T and σ_{TT} with the following form:

 π^0 results

$$\frac{t'^{\alpha}}{Q^{\beta}} \tag{1}$$

Selection of exclusive π^0 events

Since $M_{ep \to e\gamma\gamma X}^2$ and $m_{\gamma\gamma}$ are correlated, we apply a 2D-cut to ensure exclusivity and particle identification.

$$N_{\mathcal{C}} = N_{ep \to ep\pi^0} + N_{acc} + N_{SIDIS}$$
,

Several accidental cases:

- \bullet e π^0 given by the diagonal.
- $e\gamma\gamma$ given by the horizontal or vertical line.
- \bullet $e\gamma\gamma$ everywhere.

Results at my defense (with DIS normalization)

Kroll-Goloskokov (solid line) Goloskokov S. and Kroll P.,Eur.Phys.Jour.A 47:112 (2011) Goldstein-Liuti (dashed line)

Goldstein *et al.*, hep-ph 1311.0483 (2013)

But problems were...

- Disappointing χ^2 (about 2 or 3).
- \bullet σ_L mostly negative, even by applying a normalization correction using the DIS results.
- When evaluating the exclusivity uncertainty, we obtained it large.

Improve the smearing!

Why smearing is so important:

You cut on the missing mass to ensure exclusivity. But you remove approximately 30% of events.

It is corrected by cutting in the Monte Carlo simulation...

ONLY IF... MC reproduces perfectly the experimental distribution.

 μ = 0.88 and σ =0.15 for the exclusivity peak.

Why smearing is so important:

You cut on the missing mass to ensure exclusivity. But you remove approximately 30% of events.

It is corrected by cutting in the Monte Carlo simulation...

ONLY IF... MC reproduces perfectly the experimental distribution.

 μ = 0.88 and σ =0.15 for the exclusivity peak.

MC mismatch: μ = 0.8825 and σ =0.1475 for the exclusivity peak.

Smearing part 1

As mentionned previously, there is a correlation between $m_{\gamma\gamma}$ and $M_{ep\to e'\pi^0X}^2$. To compensate it and make things easier:

$$M_{ep \to e'\pi^0 X}^2 \to M' = M_{ep \to e'\pi^0 X}^2 + 12 \times (m_{\gamma\gamma} - m_{\pi})$$
 (2)

We need to find three parameters to match missing mass and invariant mass distributions (and a stable cross section):

- Calibration coefficient.
- ullet Energy resolution. (control the width of M' and $m_{\gamma\gamma}$)
- Angular resolution. (control the width of M' and $m_{\gamma\gamma}$) Very difficult to disentangle from energy resolution.

M. Defurne (CEA Saclay - IRFU/SPhN) π⁰ results January 18th 2016

Smearing part 2

Idea: With a perfect smearing, the cross section should not change when changing the cut on M' and $m_{\gamma\gamma}$.

Let's try to find the parameters by requiring the cross section to not change when changing the cuts. We are going to try it bin-by-bin.

We define σ_{xy} such as $m_{\gamma\gamma}$ in [y;0.17] and M' in [0.4;x].

Smearing part 2:For a specific experimental bin...

- We try a set of parameters and smear the MC. We fill the histograms of missing mass and invariant mass with psf Nevent.
- With this smearing, we can also extract a cross section σ_0 with $m_{\gamma\gamma}$ in [0.1; 0.17] and M' in [0.4; 0.95].
- We multiply the missing mass and invariant mass histograms with σ_0 and the luminosity. We should recover the experimental histograms.
- We also look at the ratio R:

$$R = \frac{\sigma_{xy} with with \ m_{\gamma\gamma} \ in \ [y;0.17] \ and \ M' \ in \ [0.4;x]}{\sigma_0} \tag{3}$$

We minimize the χ^2 's of the missing mass and invariant mass, on top of minimizing the variations of R.

Smearing part 3: Check σ_0

Be careful: Bin migration not corrected!

 π^0 results

Smearing part 4: Check the stability

R as a function of x and y ($m_{\gamma\gamma}$ in [y;0.17] and M' in [0.4;x]) .

Smearing part 5: Check $m_{\gamma\gamma}$ and M'

You can also check that $m_{\gamma\gamma}$ and M' are well reproduced. (red is MC and blue experimental).

Smearing part 5: Check $m_{\gamma\gamma}$ and M'

You can also check that $m_{\gamma\gamma}$ and M' are well reproduced.

Smearing part 6: However...

Summing over all the bins... Great but could be better!

Need to take into account bin migration (10%) since I normalize with the cross section!

And need to tune the missing mass fit range for a few bins by hand.

The fit of experimental number of counts: Kin2high

We fit low and high beam energy number of counts to extract $\frac{d\sigma_T}{dt}$, $\frac{d\sigma_L}{dt}$, $\frac{d\sigma_{TL}}{dt}$ and $\frac{d\sigma_{TT}}{dt}$ For the worst case: (MC in red, experimental counts in black)

The fit of experimental number of counts: Kin2low

Better for kin2low,

The fit of experimental number of counts: Kin1low

Other kinematics have χ^2/Ndf of about 1.5,

January 18th 2016

Results today (with NO DIS normalization... still PRELIMINARY)

Kroll-Goloskokov (solid line) Goloskokov S. and Kroll P., Eur. Phys. Jour. A 47:112 (2011) Goldstein-Liuti (dashed line)

Goldstein et al., hep-ph 1311.0483 (2013)

The exclusivity cut uncertainty

If we look at the stability of the unseparated cross section: (left at my defense, right today!: Same scale for a better comparison)

- It is much more stable than a few months ago!
- Compared to the flat part of the cross section in June, we have lost 5 to 10%. (I was off by 5 to 10%).

Not all of them are that beautiful!

It is not because it is flat at some point that there is no systematic shift. The low missing mass behaviour is a hint of how big you this shift is.

Exclusivity cut: Separated cross sections

Exclusivity cut: Separated cross sections

But still some work maybe... difficult acceptance for Kin3low at $\phi=0^\circ$

Conclusions

Positive outputs:

- Robust method to smear the Monte-Carlo simulation (Finally! sorry for the wait).
- σ_I is closer from 0 than ever, and thus without DIS normalization! (but it might be a coincidence)
- Significant decrease of the systematic uncertainties and better χ^2 . Very important!
- Disagreement of 10-20% with Malek may be explained by smearing procedure.

Perspective:

• Can try to improve the smearing by gathering bins 2-by-2. Or include bin migration for normalization (running now!).

Suggestions:

- In any case, I would like to drop the last bin since we do not correct for bin migration ($\sim 10\%$ + terrible acceptance effect).
- Since we have some troubles with the luminosity, I would like to give