DVCS collaboration meeting M. Defurne CEA Saclay - IRFU/SPhN January 18th 2016 ## The first Rosenbluth separation of π^0 electroproduction We need to separate σ_L and σ_T to confirm the large transverse contribution. $$\begin{split} \frac{d^4\sigma}{dt d\phi dQ^2 dx_B} &= \frac{1}{2\pi} \Gamma_{\gamma^*}(Q^2, x_B, E_e) \Big[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \\ &\sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{TL}}{dt} cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt} cos(2\phi) \Big], \end{split}$$ | Setting | E (GeV) | Q^2 (GeV ²) | x_B | ϵ | |-----------|---------------|---------------------------|-------|--------------| | 2010-Kin1 | (3.355; 5.55) | 1.5 | 0.36 | (0.52; 0.84) | | 2010-Kin2 | (4.455; 5.55) | 1.75 | 0.36 | (0.65; 0.79) | | 2010-Kin3 | (4.455; 5.55) | 2 | 0.36 | (0.53; 0.72) | Rosenbluth separation: Measure $\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}$ for two different ϵ -values at same Q^2 , x_B and t'. #### Ensure the kinematics of the extraction To limit the error induced by a slight mismatch between the averaged values of Q^2 and x_B between the two beam energies: • We apply a 2D-cut on Q^2 and x_B to match the phase space of both beam energies. • Iteration in the extraction by fitting kinematical dependencies of σ_T and σ_{TT} with the following form: π^0 results $$\frac{t'^{\alpha}}{Q^{\beta}} \tag{1}$$ ## Selection of exclusive π^0 events Since $M_{ep \to e\gamma\gamma X}^2$ and $m_{\gamma\gamma}$ are correlated, we apply a 2D-cut to ensure exclusivity and particle identification. $$N_{\mathcal{C}} = N_{ep \to ep\pi^0} + N_{acc} + N_{SIDIS}$$, #### Several accidental cases: - \bullet e π^0 given by the diagonal. - $e\gamma\gamma$ given by the horizontal or vertical line. - \bullet $e\gamma\gamma$ everywhere. ## Results at my defense (with DIS normalization) Kroll-Goloskokov (solid line) Goloskokov S. and Kroll P.,Eur.Phys.Jour.A 47:112 (2011) Goldstein-Liuti (dashed line) Goldstein *et al.*, hep-ph 1311.0483 (2013) #### But problems were... - Disappointing χ^2 (about 2 or 3). - \bullet σ_L mostly negative, even by applying a normalization correction using the DIS results. - When evaluating the exclusivity uncertainty, we obtained it large. Improve the smearing! ## Why smearing is so important: You cut on the missing mass to ensure exclusivity. But you remove approximately 30% of events. It is corrected by cutting in the Monte Carlo simulation... **ONLY IF...** MC reproduces perfectly the experimental distribution. μ = 0.88 and σ =0.15 for the exclusivity peak. ### Why smearing is so important: You cut on the missing mass to ensure exclusivity. But you remove approximately 30% of events. It is corrected by cutting in the Monte Carlo simulation... **ONLY IF...** MC reproduces perfectly the experimental distribution. μ = 0.88 and σ =0.15 for the exclusivity peak. MC mismatch: μ = 0.8825 and σ =0.1475 for the exclusivity peak. #### Smearing part 1 As mentionned previously, there is a correlation between $m_{\gamma\gamma}$ and $M_{ep\to e'\pi^0X}^2$. To compensate it and make things easier: $$M_{ep \to e'\pi^0 X}^2 \to M' = M_{ep \to e'\pi^0 X}^2 + 12 \times (m_{\gamma\gamma} - m_{\pi})$$ (2) We need to find three parameters to match missing mass and invariant mass distributions (and a stable cross section): - Calibration coefficient. - ullet Energy resolution. (control the width of M' and $m_{\gamma\gamma}$) - Angular resolution. (control the width of M' and $m_{\gamma\gamma}$) Very difficult to disentangle from energy resolution. M. Defurne (CEA Saclay - IRFU/SPhN) π⁰ results January 18th 2016 #### Smearing part 2 Idea: With a perfect smearing, the cross section should not change when changing the cut on M' and $m_{\gamma\gamma}$. Let's try to find the parameters by requiring the cross section to not change when changing the cuts. We are going to try it bin-by-bin. We define σ_{xy} such as $m_{\gamma\gamma}$ in [y;0.17] and M' in [0.4;x]. # Smearing part 2:For a specific experimental bin... - We try a set of parameters and smear the MC. We fill the histograms of missing mass and invariant mass with psf Nevent. - With this smearing, we can also extract a cross section σ_0 with $m_{\gamma\gamma}$ in [0.1; 0.17] and M' in [0.4; 0.95]. - We multiply the missing mass and invariant mass histograms with σ_0 and the luminosity. We should recover the experimental histograms. - We also look at the ratio R: $$R = \frac{\sigma_{xy} with with \ m_{\gamma\gamma} \ in \ [y;0.17] \ and \ M' \ in \ [0.4;x]}{\sigma_0} \tag{3}$$ We minimize the χ^2 's of the missing mass and invariant mass, on top of minimizing the variations of R. ## Smearing part 3: Check σ_0 Be careful: Bin migration not corrected! π^0 results # Smearing part 4: Check the stability R as a function of x and y ($m_{\gamma\gamma}$ in [y;0.17] and M' in [0.4;x]) . # Smearing part 5: Check $m_{\gamma\gamma}$ and M' You can also check that $m_{\gamma\gamma}$ and M' are well reproduced. (red is MC and blue experimental). # Smearing part 5: Check $m_{\gamma\gamma}$ and M' You can also check that $m_{\gamma\gamma}$ and M' are well reproduced. ### Smearing part 6: However... Summing over all the bins... Great but could be better! Need to take into account bin migration (10%) since I normalize with the cross section! And need to tune the missing mass fit range for a few bins by hand. # The fit of experimental number of counts: Kin2high We fit low and high beam energy number of counts to extract $\frac{d\sigma_T}{dt}$, $\frac{d\sigma_L}{dt}$, $\frac{d\sigma_{TL}}{dt}$ and $\frac{d\sigma_{TT}}{dt}$ For the worst case: (MC in red, experimental counts in black) ## The fit of experimental number of counts: Kin2low #### Better for kin2low, ## The fit of experimental number of counts: Kin1low #### Other kinematics have χ^2/Ndf of about 1.5, January 18th 2016 # Results today (with NO DIS normalization... still PRELIMINARY) Kroll-Goloskokov (solid line) Goloskokov S. and Kroll P., Eur. Phys. Jour. A 47:112 (2011) Goldstein-Liuti (dashed line) Goldstein et al., hep-ph 1311.0483 (2013) ## The exclusivity cut uncertainty If we look at the stability of the unseparated cross section: (left at my defense, right today!: Same scale for a better comparison) - It is much more stable than a few months ago! - Compared to the flat part of the cross section in June, we have lost 5 to 10%. (I was off by 5 to 10%). Not all of them are that beautiful! It is not because it is flat at some point that there is no systematic shift. The low missing mass behaviour is a hint of how big you this shift is. ### Exclusivity cut: Separated cross sections ### Exclusivity cut: Separated cross sections But still some work maybe... difficult acceptance for Kin3low at $\phi=0^\circ$ #### Conclusions #### Positive outputs: - Robust method to smear the Monte-Carlo simulation (Finally! sorry for the wait). - σ_I is closer from 0 than ever, and thus without DIS normalization! (but it might be a coincidence) - Significant decrease of the systematic uncertainties and better χ^2 . Very important! - Disagreement of 10-20% with Malek may be explained by smearing procedure. #### Perspective: • Can try to improve the smearing by gathering bins 2-by-2. Or include bin migration for normalization (running now!). #### Suggestions: - In any case, I would like to drop the last bin since we do not correct for bin migration ($\sim 10\%$ + terrible acceptance effect). - Since we have some troubles with the luminosity, I would like to give