## **Opportunities in Hadron Spectroscopy at the EIC** Justin Stevens CLAS Collaboration Meeting: 2.24.16







### Big questions for "QCD in 2025" in ep/eA

- How quarks and gluons are confined inside the hadrons – 3D structure?
- □ How does the glue fill out hadron's inner space 3D glue distribution?
- How hadrons are emerged from the color charge(s)?

#### From J. Qiu's talk at EIC Users Meeting

https://conferences.lbl.gov/event/56/

### Big questions for "QCD in 2025" in ep/eA

- How quarks and gluons are confined inside the hadrons – 3D structure?
- □ How does the glue fill out hadron's inner space 3D glue distribution?
- How hadrons are emerged from the color charge(s)?

## How to understand the family of hadrons?

- Can we see gluonic excitations in hadron spectrum?
- Interpretations of GlueX data from JLab, precisions?
- ♦ XYZ particles at future ep + eA, …

# From J. Qiu's talk at EIC Users Meeting

https://conferences.lbl.gov/event/56/

#### A new particle explosion?



#### XYZ states

- Many new states observed in the last few years
- Not predicted by the standard charmonium models
- Many models for interpretation: resonant states, meson molecules, rescattering effects, etc.





CLAS Meeting: 2.24.16





#### a) pion b) proton c) Z<sub>c</sub>(3900) c) d c

Physics Viewpoint 6, 69 (2013)

#### **Meson Molecule?**





CLAS Meeting: 2.24.16

Justin Stevens, Jefferson Lab 7





#### Exotic states

#### Why are they exotic?

- \* Some decay to  $\psi$  (ie. contain  $c\overline{c}$ ) and are charge which requires 4+ quarks (tetra- and penta- quarks)
- Predictions for others with exotic quantum numbers eg. hybrid mesons with excited gluonic field in wavefunction

#### Where to look for them?

- \* e<sup>+</sup>e<sup>-</sup>: CLEO, BESIII, BaBar, Belle II (J<sup>PC</sup> = 1<sup>--</sup>)
- \* pp: LHCb, etc.
- \*  $p\bar{p}$ : PANDA@GSI (glue rich environment, associated meson production for exotic J<sup>PC</sup>)
- \* Photoproduction: GlueX, CLAS12, ... EIC!
  - Produce any J<sup>PC</sup> and some models predict hybrid meson production comparable to conventional mesons

#### **Tetraquark?**



**Pentaquark?** 







- \* The goal of the JLab 12 spectroscopy program is to search for and ultimately map out the spectrum of light quark hybrid mesons
- \* What about hybrid mesons containing charm?

### Charmed hybrids

#### Hadron Spectrum Collaboration: JHEP 1207 (2012) 126



### Charmed hybrids

#### Hadron Spectrum Collaboration: JHEP 1207 (2012) 126





\* Lattice QCD predicts hybrid states charmonium states with gluonic contribution to their wavefunction

![](_page_15_Figure_0.jpeg)

- \* Lattice QCD predicts hybrid states charmonium states with gluonic contribution to their wavefunction including exotic J<sup>PC</sup> = 1<sup>-+</sup>, 0<sup>+-</sup>, 2<sup>+-</sup>
- Exotic J<sup>PC</sup> not accessible in e<sup>+</sup>e<sup>-</sup>, but could be studied through other mechanisms like **photoproduction** or pp annihilation (eg. PANDA@GSI)

#### XYZ states in photoproduction

![](_page_16_Figure_1.jpeg)

Several proposals to study XYZ states in photoproduction

$$\begin{array}{ll} \ast & \gamma p \to Z_c^+(3900)n, Z_c^+ \to J/\psi \pi^+ & \mbox{PRD 88 (2013) 114009} \\ \ast & \gamma p \to Z_c^+(4430)n, Z_c^+ \to \psi' \pi^+ & \mbox{PRD 77 (2008) 094005, PRC 83 (2011) 065203} \\ \ast & \gamma p \to Z_c^+(4200)n, Z_c^+ \to J/\psi \pi^+ & \mbox{arXiv:1503:02125 (incl. Regge trajectories in model)} \\ \ast & \gamma p \to Y(3940)p, Y(3940) \to J/\psi \omega & \mbox{PRD 80 (2009) 114007} \end{array}$$

Use an Effective Lagrangian approach with Vector Meson Dominance

![](_page_17_Figure_0.jpeg)

Model prediction that photoproduction is enhanced at threshold

- \* Unknown  $Z_c \rightarrow J/\psi \pi$  decay width drives total cross section
- \* Pomeron background at higher COM energies

#### Previous experiments

- Photoproduciton at HERA in e+p
  - \* Quasi-real photons at low-Q<sup>2</sup>
  - Same idea as MesonEx@CLAS12

![](_page_18_Figure_4.jpeg)

#### Previous experiments

- Photoproduciton at HERA in e+p
  - Quasi-real photons at low-Q<sup>2</sup>
  - Same idea as MesonEx@CLAS12
- \* Recent result from Compass in  $\mu$ +p to search for Z<sub>c</sub>(3900)
  - \* Already some constraints on  $Z_c \rightarrow J/\psi \pi$  decay width?
- What could the EIC do in e+p?

![](_page_19_Figure_7.jpeg)

![](_page_19_Figure_8.jpeg)

#### Previous experiments

- Photoproduciton at HERA in e+p
  - Quasi-real photons at low-Q<sup>2</sup>
  - Same idea as MesonEx@CLAS12
- \* Recent result from Compass in  $\mu$ +p to search for Z<sub>c</sub>(3900)
  - \* Already some constraints on  $Z_c \rightarrow J/\psi \pi$  decay width?
- What could the EIC do in e+p?

![](_page_20_Figure_7.jpeg)

![](_page_20_Figure_8.jpeg)

![](_page_20_Figure_9.jpeg)

 $Z_c^+(3900)$  at the EIC

![](_page_21_Figure_1.jpeg)

\* Assume modest energy electron and proton beams:  $E_p = 50 \text{ GeV}$  and  $E_e = 5 \text{ GeV}$ 

\* Z<sub>c</sub> and subsequent decays are boosted in proton direction

\* Low-Q<sup>2</sup> electron and neutron very close to beamline

![](_page_22_Figure_0.jpeg)

CLAS Meeting: 2.24.16

### EIC detector designs

- Requirements for EIC detector similar to hadron spectroscopy needs!
  - ★ Vertex detector to explore open charm decays: eg.  $Z_c \rightarrow D^*D$
  - \* Consider e and  $\mu$  ID for J/ $\psi$ ?
- Beamline detectors ensure exclusivity: low-Q<sup>2</sup> tagger, ZDCs, Roman Pots

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Figure_7.jpeg)

### Summary and Outlook

- New "XYZ" states in heavy quarkonium are challenging our understanding of the meson spectrum
- It's possible to probe the XYZ states and possibly heavy quark hybrid mesons in photoproduction at an EIC
- Natural connection between light and heavy quark sectors with GlueX/CLAS12 and EIC hadron spectroscopy
- \* Future studies will be focused on "fast" simulation studies and to provide more detailed feedback on the detector requirements
- \* Plenty of room for people to make contributions, and develop this aspect of the EIC program

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi \ (4260 \text{ MeV})$ 

![](_page_24_Figure_7.jpeg)

#### **EIC User's Group: <u>http://www.eicug.org/web/</u>**

## Backup

### Low Q<sup>2</sup> electron tagger

![](_page_26_Figure_1.jpeg)

\* Electron beam polarimetry essential to EIC physics program

In same chicane used for Compton polarimeter, include taggers for quasi-real photons

#### Pentaquarks: LHCb

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

CLAS Meeting: 2.24.16

#### Pentaquarks: LHCb

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

#### Pentaquarks: LHCb

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_29_Figure_4.jpeg)

#### Pentaquark Photoproduction

Photoproduction of hidden charm pentaquark states  $P_c^+(4380)$  and  $P_c^+(4450)$ 

![](_page_30_Figure_2.jpeg)

CLAS Meeting: 2.24.16

### Pentaquark Photoproduction

\* What about a bottomonium pentaquark? arXiv:1508.01496

![](_page_31_Figure_2.jpeg)

# Mass (~11 GeV) not accessible at JLab fixed target

\* Unclear what other facilities could search for this

### Other charged bottomonium states

#### Zb(10610) and Zb(10650)

![](_page_32_Figure_2.jpeg)

- Similar bottomonium-like spectrum in charged Z<sub>b</sub> states observed at Belle near B\*B threshold
- \* Variable energies available at an EIC could probe these higher mass states in photoproduction as well

### Hybrid photoproduction

- Expectations from the flux tube model is that hybrids should be photoproduced at a similar rate to conventional mesons
- \* Lattice QCD calculations of charmonium radiative decays
  - \* Conventional cc mesons in reasonable agreement with experiment
  - Sizable radiative transitions predicted for hybrid charmonium

| TT 1 4 1           |               | transition                                   | $\Gamma_{\text{lattice}} (\text{keV})$ | $\Gamma_{\rm expt}~({\rm keV})$ |
|--------------------|---------------|----------------------------------------------|----------------------------------------|---------------------------------|
| $c\bar{c}g$ Hybrid |               | $\chi_{c0}  ightarrow J/\psi\gamma$          | 199(6)                                 | 131(14)                         |
|                    |               | $\psi' 	o \chi_{c0} \gamma$                  | 26(11)                                 | 30(2)                           |
|                    |               | $\psi'' \to \chi_{c0} \gamma$                | 265(66)                                | 199(26)                         |
|                    |               | $c\bar{c}g(1^{}) \to \chi_{c0}\gamma$        | < 20                                   |                                 |
|                    |               | $J/\psi 	o \eta_c \gamma$                    | 2.51(8)                                | 1.85(29)                        |
| C                  | Y(4260)?<     | $\psi'  ightarrow \eta_c \gamma$             | 0.4(8)                                 | 0.95-1.37                       |
|                    | $\backslash$  | $\psi'' \to \eta_c \gamma$                   | 10(11)                                 |                                 |
|                    |               | $\sim c\bar{c}g(1^{}) \to \eta_c \gamma$     | 42(18)                                 |                                 |
|                    | Exotic Hybrid | $c\bar{c}g(1^{-+}) \rightarrow J/\psi\gamma$ | 115(16)                                |                                 |
|                    | -             |                                              |                                        |                                 |

#### PRD 79 (2009) 094504 and Review article 1502.07276

### Why photoproduction?

- New production mechanism for charged charmonium provides new insight into the nature of charged charmonia (Z<sub>c</sub>)
- Spin-1 photon beam may provide enhanced production of "hybrid" mesons with a gluonic excitation component of their wavefunction
- # JLab 12 GeV upgrade to map the spectrum of light and strange quark hybrid mesons at GlueX and CLAS12 (max  $√s_{yp} = 4.8$  GeV)

![](_page_34_Figure_4.jpeg)

![](_page_34_Picture_5.jpeg)

#### Photoproduction at an EIC could provide unique connections between JLab 12 GeV and Heavy Quark spectroscopy

### Photoproduction at the EIC

#### **\*** Real photon beams:

- \* Coherent bremsstrahlung (GlueX/Hall D @ JLab, Mainz, etc.)
- \* Compton Backscattering (SLAC, ILC, etc.)

![](_page_35_Figure_4.jpeg)

### Photoproduction at the EIC

#### **\*** Real photon beams:

- \* Coherent bremsstrahlung (GlueX/Hall D @ JLab, Mainz, etc.)
- \* Compton Backscattering (SLAC, ILC, etc.)

![](_page_36_Figure_4.jpeg)

### Photoproduction at the EIC

#### **\*** Real photon beams:

- \* Coherent bremsstrahlung (GlueX/Hall D @ JLab, Mainz)
- Compton Backscattering (SLAC, ILC)

#### **\*** Quasi-real photons:

Broad band photon beam induced from bremsstrahlung induced by EM field of proton/ion bunch (think UPCs for eA/ep)

$$f_{\gamma}^{(e)}(y) = \frac{\alpha_{\rm em}}{2\pi} \left[ 2m_e^2 y \left( \frac{1}{q_{max}^2} - \frac{1}{q_{min}^2} \right) + \frac{1 + (1-y)^2}{y} \log \frac{q_{min}^2}{q_{max}^2} \right]$$

### Weizsäcker-Williams Approximation

\* Incoming electron beam considered to be the source of a broad-band photon beam with a photon flux:  $f_{y}$ 

$$d\sigma_{ep} = \sigma_{\gamma p}(q,k) f_{\gamma}^{(e)}(y) dy$$

$$f_{\gamma}^{(e)}(y) = \frac{\alpha_{\rm em}}{2\pi} \left[ 2m_e^2 y \left( \frac{1}{q_{max}^2} - \frac{1}{q_{min}^2} \right) + \frac{1 + (1-y)^2}{y} \log \frac{q_{min}^2}{q_{max}^2} \right]$$

- Select Q<sup>2</sup> < 0.01 for "quasi-real" photons</p>
- \* Convolute predicted cross section ( $\sigma_{\gamma p}$ ) dependence on  $\sqrt{s_{\gamma p}}$  with photon flux for e+p collision kinematics
- \* Good agreement with previous measurements

Frixione et. al. PLB 319 (1993) 339

### EIC integrated IR design

![](_page_39_Figure_1.jpeg)

- \* Detectors near the beamline are an integral part of the EIC physics program, and are critical for exclusive reactions in spectroscopy
  - \* Low-Q<sup>2</sup> electron detection for photon tagging
  - \* Zero degree calorimeters for neutron detection

#### Polarization in spectroscopy

 $\gamma p \to Z_c^+(4430)n$ 

- # Highly polarized beams already in baseline EIC
- \* Additional observables to determine J<sup>P</sup>, etc.

![](_page_40_Figure_4.jpeg)