UPDATE ON STATUS OF DVCS ANALYSIS FROM EI-6 DATA

A. Movsisyan, H. Avakian, S. Pisano

Introduction & Motivation

Measurement of DVCS Cross Section, via detection of final state proton p' and lepton e'.

Large statistics & broad kinematic coverage => large coverage of Φ acceptance.

E1-6 experiment:

Data collected in 2001-2002. Beam energy 5.754 GeV 5cm long liquid hydrogen target Average beam polarization 70%

photons in the fiducial volume

sin(0)sin(þ

Analysis Steps and Strategy

ep & epy sample is divided in 3 subsamples

spatial distributions of calculated photons ep & epγ epγ

I.) separate analysis of ep,
 epγ, epγγ samples.

2.) epyy - to estimate exclusive pion contribution.

3.) <mark>epγ</mark> - to validate the analysis procedure.

4.) ep - cross-check of MC normalization

Event Selection & Data Quality

charged particle momentum correction based on mc (energy loss corrections)

Event Selection & Data Quality

Aram Movsisyan, DPWG meeting 25.02.2016

Exclusive pion contribution (epyy sample)

Background contribution estimated from MC:

$$N_{0,1\gamma}^{Data\,\pi^{0}}(x,Q^{2},-t,\phi) = \left(\frac{N_{\pi^{0}}^{Data}}{N_{\pi^{0}}^{MC}}\right) N_{0,1\gamma(\pi^{0})}^{MC}(x,Q^{2},-t,\phi)$$

Data - MC

Normalization factor obtained from exclusive pion analysis:

Aram Movsisyan, DPWG meeting 25.02.2016

Data - MC

atio

epγ sample

 $ep\gamma - sample$ $W^2 > 4 \ [GeV^2]$ $-t < 0.52 \ [GeV^2]$ $-0.08 < M_x^2(epX) < 0.08 \ [GeV^2]$ photon fiducial volume cuts Photons are detected but not used in the event selection

Low energy photons originating from background processes are not described by exclusive pion production

epy sample

Calculated photon spatial distribution

Data - MC (epy sample)

Sufficiently good description of the measured yield by the simulation of two independent processes.

ep sample

ep-sample

- $W^2 > 4 \ [GeV^2]$
- $-t < 0.52 \; [GeV^2]$
- $-0.08 < M_x^2(epX) < 0.08 \ [GeV^2]$

 $\theta_{\gamma \ calculated} > 1.9^{\circ}$

minimum cut on opening angle of calculated photons is equivalent to minimum cut on lepton propagator (imposed in simulation)

Data - MC (ep sample)

Normalization of DVCS process is obtained from the analysis of ep_{γ} sample Good description of data by MC simulations

Data - MC (ep sample)

At small angles of emitted photons exclusive pion contribution is suppressed

Conclusion & Outlook

a. Sufficiently good description of data by MC simulation allows to measure DVCS via detection of only electron and proton. b. Further improvement of Data-MC comparison can be obtained considering additional processes (like Δ + production) and radiative corrections.

c. Analysis procedure implemented separately on ep_{γ} and ep_{γ} samples is self-consistent.

a. Check for possible contribution from ∆+ production.
b. Further fine tuning of selection procedure.
c. Estimation of systematic uncertainties for the measurement of cross sections.

Thank you!

