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Hadron spectroscopy =1=

- Extract values of fundamental parameters 
- Extract properties of resonances 
- Searches for new resonances/new states of matter 
- Understand fundamental laws (matching QCD with exp.) 
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Amplitude analysis =2=

consistent fitting functions
constraints from existing data
Finite Energy Sum Rules (FESR)

analyticity A(s, t) =
2

⇡

1Z

sth

Im(s0, t)

s0 � s
ds0

2Im T = iTT †

1 + 2 ! 3 + 4

1 + 3̄ ! 2̄ + 4

1 + 4̄ ! 2 + 3̄

model predictions 
data  

lattice simulations

unitarity

crossing symmetry

Lorentz symmetry, 
quantum numbers, etc.

s
t
u



Finite Energy Sum Rules =3=
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FIG. 11. (color online) Matching low and high energy models in the intermediate region yields new amplitudes. Fig (a)
amplitude A

0(�). Fig (b) amplitude ⌫B

(�). Fig (c) amplitude A

0(+). Fig (d) amplitude ⌫B

(+).

lead to a similar agreement with our l.h.s.. The sum
rule for the dominant isovector amplitude ⌫B(�) is also
very well satisfied. The largest relative deviations be-
tween the two sides of the sum rule are observed in the
smallest amplitude A0(�). In particular the lowest mo-
ment of the left side of the sum rule for A0(�) displays a
change of sign at a di↵erent t with respect to its other
moments. As we chose to reproduce the change of sign of
the highest moments, the FESR for the lowest moment
is not so well satisfied. In summary, an independent fit
of the high energy data yield FESR’s globally satisfied
for the four amplitudes. There are nevertheless room for
improvement.

The transition region between resonances and Regge
exchanges is found to be E

lab

⇠ 1.6 � 2 GeV in the for-
ward direction. We joined the imaginary parts of the am-
plitudes in the two regions and defined new amplitudes
in the whole energy range and for small angles. The real
parts of these new amplitudes are reconstructed from the
dispersion relation. The real parts compare well with the
original SAID solution for small momentum transfers as
shown in Fig. 12.

In practice, one would aim at implementing FESR’s in
a global amplitude fit. In such analysis the low-energy
region, parametrized through partial waves and the high-

energy region, parametrized through Regge exchanges
are fitted simultaneously, with FESR imposed as a con-
straint on fit parameters. Imposition of FESR reduces
model dependence of the low energy parametrization and
might provide an additional check on systematic uncer-
tainties in extraction of baryon resonance parameters.
Nowadays, SAID uses dispersion relations to constrain

the real parts of the amplitudes [10–12]. We expect that
our Regge parametrization will help to implement, in a
systematic way finite energy sum rules in pion-nucleon
scattering and reactions. With this aim, all the material,
including data and software are available in an interactive
form online [15].
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data [26] using pa = 150.2 GeV and pb = 199.2 GeV
in Eq. (23) and from our model in Fig. 4. They clearly
agree well as our trajectory is fitted to this data set. The
data support a linear trajectory at least up to the zero
↵⇢(t) = 0. For the determination of the ⇢ trajectory at
higher |t|, we refer to the measurement of Refs [28, 29]
using semi-inclusive reaction.

ÊÊÊÊ
ÊÊ
Ê Ê

Ê Ê

Ê
Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê

Ê

Ê

ÊÊÊÊ
ÊÊ
Ê Ê

Ê Ê

Ê
Ê

Ê

Ê

Ê
Ê

Ê
Ê

Ê

Ê

Ê

- a = 0.49 + 0.94 t

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-tHGeV2L

a

FIG. 4. (color online) ⇢ trajectories from our model (blue
solid line) and Barger and Phillips [30] (green dashed line)
compared to e↵ective trajectory extracted from data with Eq.
(23). We use data at p

lab

= 20.8 and 199.3 GeV from [26].

We now turn our attention to the isoscalar Regge poles.
We assume that the isoscalar amplitudes are dominated
by the Pomeron and the f

2

poles., i.e.

A0(+) = A0P +A0f , B(+) = BP +Bf . (24)

The low-energy contribution to the FESR in Fig. 1 indi-
cates that helicity-flip ⌫B(+) and helicity non-flip A0(+)

isoscalar t�channel amplitudes are comparable. Phe-
nomenologically the helicity non-flip amplitude A0(+),
proportional to the total cross section, is more con-
strained by the data than the helicity flip amplitude
⌫B(+). We choose to impose the equality between
t�channel helicity flip and non-flip amplitudes in order
to satisfy the FESR. The first physical particle on the f

2

trajectory is the f
2

(1275) spin-2 meson. To remove the
ghost pole at ↵f = 0 we use the parametrization

A0P = �CP
0

eC
P
1t

⇡

�(↵P)
e�i⇡↵P + 1

2 sin⇡↵P
⌫↵P , ⌫BP = A0P,

(25a)

A0f = �Cf
0

eC
f
1 t ⇡

�(↵f )

e�i⇡↵f + 1

2 sin⇡↵f
⌫↵f , ⌫Bf = A0f .

(25b)

We choose the f
2

trajectory to be degenerate with the ⇢,
↵f = ↵⇢. The degeneracy between the ⇢ and f

2

trajecto-
ries and residues follows from absence of exotic, isospin-2
mesons, e.g. in ⇡+⇡+ scattering [31]. Degeneracy be-
tween the f

2

and ⇢ and absence of ghost poles (↵f = 0)

is then consistent with the observed zero in the ⇢ residue
at ↵⇢ = 0 cf. Eq.(22b).
The Pomeron trajectory has a special status. There

are no known mesons lying on it, with the exception that
it may be related to the tensor glueball [32]. The tra-
jectory is known to be approximately constant, ↵P ⇠ 1.
In the following we parametrize it using a second order
polynomial,

↵P = ↵0

P + ↵0
Pt+ ↵00

Pt
2, (26)

to model the deviation from a straight line observed in
the di↵erential cross section cf. Fig. 6. Over the range
of t considered here, the Pomeron trajectory is almost
constant, and whether or not the factor �(↵P) is included
is a matter of taste.
In total we thus have seven parameters describing the

leading t-channel isoscalar Regge poles. Initially we at-
tempted to fix these parameters, just like we did in the
case of isovector exchanges, by fitting the di↵erential
cross section. Since the Pomeron exchange, having the
largest intercept, dominates and at the same time has a
weak t-dependent, we found that the error on the mag-
nitude of the residue was large, of the order of 10%. We
therefore chose to perform a fit of the total cross sections
(keeping only p

lab

� 5 GeV data) to first determine CP,f
0

and ↵0

P for the Pomeron. The results are shown in Fig. 5.
In the next step, using the di↵erential cross section for
p
lab

> 3 GeV we determine the f
2

and Pomeron slope
parameters CP,f

1

, and the remaining Pomeron parame-
ters that determine its t-dependence, ↵0

P and ↵00
P . The

comparison with the data is shown in Fig. 6 for p
lab

� 50
GeV. In the fit we use the data from [33–35]. The value
of the parameters is given in columns three and four in
Table I.
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• p+p
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FIG. 5. (color online) Total cross section. Data from [6].

We compare our model with the di↵erential cross sec-
tion at p

lab

= 3, 5, 6 GeV from Ref. [35] as shown on
Fig. 7. Our amplitudes reproduce the ⇡±p di↵erential
cross section in whole range of t.

total cross section
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FIG. 6. (color online) ⇡

�
p ! ⇡

�
p di↵erential cross section for p

lab

� 50 GeV compared to data from [33] (a) and [34] (c).
⇡

+

p ! ⇡

+

p di↵erential cross section for p

lab

� 50 GeV compared to data from [33] (b) and [34] (d) The theoretical model
(solid lines) includes the ⇢, Pomeron and f poles. The parameters are given in Table I.

In the model the isovector contributions to the helicity
non-flip amplitude is almost negligible. If follows from
Eq. (10c), that with the approximation A0(�) ⇡ 0 polar-
izations in ⇡+p and ⇡�p elastic scattering are predicted
to be opposite to each other. This is verified at energies
higher than p

lab

> 5 GeV, cf. as shown in Fig 8.

C. Comparison between low- and high-energy
contributions to the sum rules

Having determined the parameters for the high energy
model we can compute the right hand side of the sum rule
in Eq. (20). The comparison with the left hand side com-
puted with the SAID solution, and discussed in Sec. IIIA
is shown in Fig. 9. We compare the first three moments
of the amplitudes A0(±) and ⌫B(±). The same cuto↵
⇤ = Emax

lab

+ t/4M with Emax

lab

= 2 GeV is used in each
sum rule.

• The 0-th moment of the t�channel isovector, he-
licity non-flip amplitude, A0(�) changes sign at
t ⇠ �0.05 GeV2 but the 2-nd and 4th of this am-
plitude change sign at t ⇠ �0.1 GeV2. As we ex-
plained, we included the change of sign at a fixed

t = �0.1 GeV2 in the parametrization (22). The 2-
nd and 4th moments of our model for the right hand
side agree well with the left side of the sum rules.
The 0-th moment of our model appears shifted at
small |t| compared to the 0-th moment of the SAID
solution. This displacement might be caused by
sub-leading Regge contributions (e.g Regge cut or
daughters trajectories).

• The moments of the t�channel isovector, helicity
flip amplitude, ⌫B(�) presents the same character-
istic as the non-flip amplitude A0(�): the left hand
side of the sum changes sign but for the lowest mo-
ment, the crossing point appears at a smaller value
of |t| than for all the other moments. In our model
for the high energy region of this amplitude, we
included only the dominant ⇢ pole with a residue
vanishing at the non-sense point ↵⇢ = 0. Thus,
the crossing for the right hand side of the sum rule
appears at the same |t| for all moments. And the
crossing point, given by the ⇢ trajectory, t = �0.52
GeV2 is in agreement with the 2-nd and 4-th mo-
ments of the SAID solution. As in the non-flip
amplitude, a sub-leading Regge singularity whose
influence would be non-negligible only in the 0-th

high-energy fit to total
and differential cross sections

⇡±p ! ⇡±p ⇡�p ! ⇡0n
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FIG. 9. (color online) Finite energy sum rules S

±
k

(⇤, t). Solid lines: left hand sides (low energy from SAID) ; dashed line:
right hand sides (high energy). Fig (a) amplitude A

0(�). Fig (b) amplitude ⌫B

(�). Fig (c) amplitude A

0(+). Fig (d) amplitude
⌫B

(+).
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FIG. 10. (color online) Both side of the sum rule for the 5-th
moment of A0(+). The solid (dashed) line is the right (left)
hand side of the sum rule. The cuto↵ is ⇤ = E

lab

+ t/4M .

ters [13, 45]. More recently, the Bonn-Julich group com-
pared their Regge amplitudes and SAID amplitude in the
intermediate region [46, 47]. The agreement is better for

the spin flip amplitude compared to that for the non-flip.
The disagreement in the non flip amplitude may be re-
lated to the constraint on the residue being proportional
to the trajectory. As we saw in Sec. III A the zero in the
non flip amplitudes is responsible for the cross over in
⇡±p and appears at small |t| and not at the zero related
to the wrong signature point ↵⇢ = 0.

In this work we investigated the possibility of imple-
menting the FESR constraints on a global fit to data. We
first computed the finite energy sum rules from various
solutions. They all displayed the same features. Guided
by these results, we parametrized the high energy re-
gion with amplitudes involving the exchange of t-channel
poles. The Pomeron and f

2

contributions to the A0(+)

amplitude, with their magnitude constrained by the to-
tal cross section and their t�dependence constrained by
this di↵erential cross-section, satisfy the FESR very well.
The FESR for the B(+) amplitude is not as well satisfied
since we imposed the relation ⌫B(+) = A0(+) in the high
energy region. The di↵erence between the two side of
the sum rules for ⌫B(+) is however small. In addition
we note that we compare the r.h.s. of the FESR with
the l.h.s taken from SAID. When computed using other
solutions, presented in Fig. 1, the r.h.s. of the sum rule
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FIG. 12. (color online) The reconstructed real parts of amplitudes (dashed lines) is compared to SAID (solid lines) for t = 0
(green) and t = �0.3 GeV2 (red). Fig (a) amplitude A
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣∣∣
∑

L,M

Aϵ
LMψϵ

LM(τ )

∣∣∣∣
2

+ non-η(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).

For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′)L and derive the ratios

R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.
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B. Central production

Ellis Close Shimada Brower Landshoff Drummond
In this case, we replace the sum in Eq. (4) by the Sommerfeld-Watson integral in both J ’s and expose the leading

Reggeon poles Ji = ↵i(ti) in each channel. As a result we obtain in the double-Regge asymptotic limit

A�1�2�3
�a�b

(s1, s2, t1, t2) = ⌘(↵1(t1))�
�a�1
1 (t1)s

↵1(t1)
1

X

�

ei�!��2
��2��(t1, t2)

⇥ ⌘(↵2(t2))�
�b�3
2 (t2)s

↵2(t2)
2

(12)

where we have factorized the residue into parts �1(t1), �2(t2) and ��(t1, t2) for the (↵11¯3), (↵2¯25) and (↵1↵24) vertices
respectively and included the signature factor

⌘(↵(t)) =
�1 + ⇠ei⇡↵(t)

sin⇡↵(t)
. (13)

The sum over � in Eq. (12) resembles the Fourier transform of �� with respect to the Toller angle !, which defines
the azimuthal angle between the plane containing particles 1 and 2 and that containing 2 and 3. In the rest frame of
particle 2 it is given by

cos! =

(pa ⇥ p1) · (pb ⇥ p3)

|pa ⇥ p1||pb ⇥ p3|
����
p2=0

. (14)

In the limit s, s1, s2 � t1, t2, m
2
i it can be written as

cos! ⇡ 1

2

p
t1t2

✓
t1 + t2 �M2

2 +

s

s1s2
�(t1, t2,M

2
2 )

◆
. (15)

Instead of ! it is often more convenient to use the variable ⌘ =

s
s1s2

.
We can define

�(t1, t2,!) =
1X

�=�1
ei�!��(t1, t2) (16)

which has a meaning of the amplitude for the PPM -vertex. Here, � has a meaning of the helicity of Reggeon
↵(t2). Taking into account that the helicity of the meson �2 = 0, the helicity of Reggeon ↵(t1) is ��, therefore
��2
��2�� = �0

��� ⌘ ��.
The conservation of parity results in the following symmetry relations. For the external vertices

��1�2
= (�1)

�1��2⌘1⌘2(�1)

J1�J2P ⇠���1�2
1 (17)

which simplifies to ��1�2
i = ���1��2

i in the case the pseudascalar mesons or proton and the pomeron/f2-meson.
In the small-t region the vertices behave as (see Appendix C)

��1�2
(t) ⇠ (�t)|�1��2|/2 (18)

The two-reggeon-meson vertex obeys

��h
�1�2

= (�1)

�h⌘h(�1)

JhP1P2⇠1⇠2�
��h
��1��2

(19)

where Ji, ⌘i are the spin and parity of the meson and Pi, ⇠i are the parity and signature of the Reggeon. The behavior
of ��1�2 at small t1, t2 is given by

��1�2(t1, t2) ⇠ (�t1)
|�1|/2

(�t2)
|�2|/2, with �1 + �2 = �h (20)

Aµµ0(s1, s2, t1, t2) =
JX

�=�J

AJ
�(s1, t2)

gJ(s1)

m2
J � imJ�(s1)� s1

dJ�0(z)e
i��

⇥ ⌘(↵2(t2))�2µµ0(t2)s
↵2(t2)
2

Aµµ0(s1, s2, t1, t2) = ⌘(↵1(t1))�1(t1)s
↵1(t1)
1

X

�

ei�!��(t1, t2)

⇥ ⌘(↵2(t2))�
µµ0

2 (t2)s
↵2(t2)
2

FESR
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In this case, we replace the sum in Eq. (4) by the Sommerfeld-Watson integral in both J ’s and expose the leading
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.
We can define

�(t1, t2,!) =
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ei�!��(t1, t2) (16)

which has a meaning of the amplitude for the PPM -vertex. Here, � has a meaning of the helicity of Reggeon
↵(t2). Taking into account that the helicity of the meson �2 = 0, the helicity of Reggeon ↵(t1) is ��, therefore
��2
��2�� = �0

��� ⌘ ��.
The conservation of parity results in the following symmetry relations. For the external vertices
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= (�1)

�1��2⌘1⌘2(�1)

J1�J2P ⇠���1�2
1 (17)

which simplifies to ��1�2
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i in the case the pseudascalar mesons or proton and the pomeron/f2-meson.
In the small-t region the vertices behave as (see Appendix C)
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Therefore, at small t it is enough to consider the lowest values of �1, �2. For the pseudoscalar meson and pomeron/f2-
meson �� = ����. It results in �0 = 0, and so |�1| = |�2| = 1 are the leading terms. Furthermore, in ti ! 0 limit
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1/2
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These results simply follow from the general rules of Reggeon theory. They are not connected with a particular vector
current model of the Pomeron, but rather follow from the fact that the product of the parity and signature of the
Pomeron is +1.
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Appendix A: Clean

Because of conservation of angular momentum and helicity the helicity amplitudes possess kinematical singularities.
Explicitly, they result from singular definition of the helicity states. The helicity amplitudes are not all independent
and are constrained so that in singular points their linear combinations vanish when the singular point is approached.

The partial-wave expansion for the helicity amplitude in the s channel has form

AHs(s, t) = 16⇡
1X

J=M

(2J + 1)AHJ(s)DJ⇤
µµ0(�s, ✓s,��s) (A1)

with

DJ
µµ0(�s, ✓s,��s) = e�iµ�sdJµµ0(zs)e

iµ0�s (A2)

and

µ ⌘ µ1 � µ2, µ0 ⌘ µ3 � µ4, M = max{|µ|, |µ0|}. (A3)

We define the scattering plane so that � = 0 and hence DJ
µµ0(�s, ✓s,��s) = dJµµ0(zs)

When the partial-wave expansion is convergence, i.e. in the physical region of s-channel, the helicity amplitudes
will inherit all singularities and simultaneous zeros of the rotation functions and partial waves. Besides the dynamical
singularities due to unitary cuts demanded by unitarity, the partial waves will possess kinematical singularities due to
the opening of the partial-wave phase space. As |p| ! 0, AJ ⇠ |p|L and similarly for the final state thresholds, which
is preserved also for particles with spin as near threshold the scattering is non-relativistic. Explicitly, this can be seen
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Studying the pentaquark in the J/Ψ photoproduction =9=

- Recent discovery of a narrow (39 MeV) exotic resonance compatible with 
a pentaquark Pc(4459) in the J/Ψp channel. 
LHCb collaboration (2015) arXiv:1507.03414 
- Proposed as an excellent candidate for J/Ψ photoproduction off a proton 
target. 
arXiv:1508.01496, arXiv:1508.00339, arXiv:1508.00888 

Testing these predictions is 
within the capabilities of 
JLAB’s CLAS detector, also in 
a wider range of scattering 
angles! 
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J/Ψ→γππ =10=

Good channel for the search of ground-state scalar glueball 
Data provided by BESIII both for the charged and neutral channel 

𝑡-channel dominated by 𝜌 exchange → model for LHC 
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𝑡 channel dominated by 𝜌 exchange → model for LHC
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3-body scattering: 𝐷𝐷𝜋 → 𝐷𝐷𝜋 ( 𝑋(3872) ) =11=

The dominant binding mechanism is expected to be the exchange of one pion in the u 
channel,  but in the literature, this has been evaluated in the static limit only (virtual pion) 

However, the 𝜋 can happen to be on shell: this 
creates another cut, which might spoil the binding 
mechanism of 𝐷𝐷*

Cusp effect if the branch points pinch the real axis 

Once developed, the formalism can be extended 
to other 3 → 3 channels, like 𝜌 𝜋 → 𝜌 𝜋... 
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3π production at COMPASS experiment =12=
Introduction

3⇡ production at COMPASS experiment

COMPASS is a fixed-target experiment.

190GeV pion beam.

The recoil proton gives trigger (veto).

Charged particles are measured by a
spectrometer.
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Introduction

Analysis method
Unitarity conditions

A = h⇡P|T̂ |3⇡i =

⇡

P
⇡

⇡

⇡

↵ T

Unitarity has to be respected Ŝ ⇥ Ŝ† = Î.

Ŝ = Î+ i T̂ , 2 ImT = iT⇢T †

Convinient parameterization of T is a K -matrix

Non-resonance processes is a physical background ?

2 ImA = iA ⇢T , A(m3⇡) = ↵(m3⇡)| {z }
1+background

⇥
resonance partz }| {
T (m3⇡),

Quasi-two-body phase space (f2 is (⇡⇡)D-state)
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2−+ sector of the 3π final state =13=

Introduction

2�+ sector of the 3⇡ final state
Mass-dependent fit

ptarget precoil

⇡beam D(S)-wave ⇡+

⇡�

⇡�2�

f2

Long standing puzzle about
⇡2(1670)� ⇡2(1880)
interplay

Our goal is to develop a
method of the analysis and
demonstrate an
applicability.

[C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
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Long standing puzzle about 
π2(1670) − π2(1880) interplay 

The goal is to develop a 
method 

of the analysis and 
demonstrate an applicability. 

M. Mikhashenko, A. Jackura



Lepton pair production on a proton target =14=
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⌧ ⌘ �t/(4M2
). Furthermore, for a fixed value of t, the

recoiling proton lab angle ⇥

lab
p is expressed in terms of in-

variants as :

cos⇥

lab
p =

M2
ll + 2(s+M2

)⌧

2(s�M2
)

p
⌧(1 + ⌧)

. (1)

The differential cross section for the dominating BH pro-
cess to the �p ! l�l+p reaction has been studied in different
contexts in the literature [19–21]. In this work, we will con-
sider the cross section differential in the momentum transfer
t and invariant mass of the lepton pair M2

ll, and integrated
over the lepton angles, which corresponds with detecting the
recoiling proton only. This cross section can be written as :

d�BH

dt dM2
ll

=

↵3

(s�M2
)

2
· 4�

t2(M2
ll � t)4

· 1

1 + ⌧

⇥
�
CE G2

Ep + CM ⌧ G2
Mp

 
, (2)

with ↵ ⌘ e2/4⇡ ⇡ 1/137, where � ⌘
q
1� 4m2

M2
ll

is the

lepton velocity in the l�l+ c.m. frame, with m the lepton
mass, and where the proton FFs GEp and GMp are functions
of t. The weighting coefficients multiplying the FFs in Eq. (2)
have the following general structure :

CE,M = C(1)
E,M + C(2)

E,M

1

�
ln

✓
1 + �

1� �

◆
, (3)

where the second term expresses the large logarithmic en-
hancement in the limit of small lepton mass in the BH process.
The coefficients C(1)

E,M , and C(2)
E,M are found to be expressed

through invariants as :

C(1)
E = t

�
s�M2

� �
s�M2 �M2

ll + t
� ⇥

M4
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llt+ t2 + 4m2M2
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⇤
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M2
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t2M2
ll +M2

(M2
ll + t)2 + 4m2M2M2
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⇤
, (4)

C(2)
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�
s�M2
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ll + t
� ⇥

M4
ll + t2 + 4m2
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M2

ll + 2t� 2m2
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M2

ll � t
�2 ⇥�M2

(M4
ll + t2) + 2m2

�
�t2 � 2M2M2

ll + 4m2M2
�⇤

, (5)

C(1)
M = C(1)

E � 2M2
(1 + ⌧)

�
M2

ll � t
�2 ⇥

M4
ll + t2 + 4m2M2

ll

⇤
, (6)

C(2)
M = C(2)

E + 2M2
(1 + ⌧)

�
M2

ll � t
�2 ⇥

M4
ll + t2 + 4m2

�
M2

ll � t� 2m2
�⇤

. (7)

In Fig. 2, we show the differential cross section d�/dt dM2
ll

for �p ! (l�l+)p which is accessed by measuring the recoil-
ing proton’s momentum and angle, for E� = 0.5 GeV and
for three values of �t : �t = 0.01 GeV2 (corresponding
with recoil proton momentum |~p 0|lab = 100 MeV/c), �t =

0.02 GeV2 (|~p 0|lab = 142 MeV/c), and �t = 0.03 GeV2

(|~p 0|lab = 174 MeV/c). As t is the argument entering the pro-
ton FFs, the values shown are chosen to cover the lower range
of the high-precision elastic ep scattering experiments [4, 5],
as well as the values for which the future MUSE elastic µp
scattering experiment [16] plans to take data. Furthermore,
the differential cross section d�/dtdM2

ll is shown as func-
tion of the squared lepton invariant mass M2

ll, which is dialed
through the recoiling proton lab angle, as shown on the lower
panel of Fig. 2. We show the cross section in a range of M2

ll,
which is kinematically separated from background channels,
well above the Compton and ⇡0 production processes on a
proton, corresponding with sharp peaks at M2

ll = 0 and at
M2

ll = 0.018 GeV2 respectively, and below the threshold for
⇡⇡ production, which starts at M2

ll = 0.078 GeV2. One no-
tices from Fig. 2 that around M2

ll = 0.06 GeV2, the µ�µ+

cross section is around a factor of 10 smaller than the e�e+

cross section, and increases with increasing M2
ll. By measur-

ing the cross section through detecting the recoiling proton
momentum and angle in the M2

ll window above the ⇡0 peak
and below ⇡⇡ threshold, and comparing cross sections at a

fixed value of t above and below µ�µ+ thresholds, it opens
the possibility for a high-precision extraction of the cross sec-
tion ratio :

Rµ/e ⌘
d�(µ�µ+

+ e�e+)

d�(e�e+)
� 1, (8)

where d� stands for d�/dt dM2
ll. The potential advantage of

such a ratio measurement is that absolute normalization un-
certainties to first approximation drop out. Indeed, at a fixed
value of t, the e�e+ cross section can be fixed by measur-
ing the cross section below µ�µ+ threshold, and the corre-
sponding normalization, mainly due to GEp, can be used to
determine the e�e+ cross section above µ�µ+ threshold. A
subsequent measurement of the sum of e�e+ + µ�µ+ cross
sections above µ�µ+ threshold, then allows to extract the ra-
tio Rµ/e, which is displayed in Fig. 3. One sees that in the
kinematic range where only the e�e+ and µ�µ+ channels
are contributing, this ratio varies between 10 to 13 %. We
like to notice that corrections, notably radiative corrections,
to first order also drop out of this ratio, measured at the same
value of the recoiling proton momentum and angle. An ac-
curate measurement of this ratio can therefore be envisaged,
opening a new perspective to perform a test of lepton univer-
sality. We have demonstrated this sensitivity in Fig. 3, by
varying the electric FF value entering the e�e+ production
process, denoted by Ge

Ep, which we take from [4, 5], versus

VP,  Vanderhaeghen, Phys. Rev. Lett. 115, 221804

at small t the ratio Rµ/e gives direct access to 
the ratio of the proton electric form factor 

in the µp versus ep scattering 

the deviation from the unity will be a sign of 
violation of the lepton universality

access the proton form factor by 
analyzing angular distributions of the 

lepton pairs
JLab
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