

AN UPDATE ON THE ELECTROMAGNETIC TRANSITION FORM FACTOR OF THE ETA^I MESON WITH G12 AND CLAS12

Michael C. Kunkel | IKP-1

Transition Form Factors

Jim Ritman, Susan Schadmand, Michael C. Kunkel;

Institut für Kernphysik, Forschungszentrum Jülich

 $V(\rho, \omega, \phi)$

 $P(\pi^0,\eta,\eta')$

- In the VMD model the transition form factors provides insight into the meson charge radius, $\!\langle r \rangle\!$
- For pseudoscalar mesons η and $\eta',$ ratio of form factors provides information on mixing angle.
- For vector meson ω there currently exist discrepancy in the measurement of the form factor with VMD model.
- The knowledge of the η form factor is also needed for the interpretation of the g-2 experiment.
- g12 experiment collected data samples of the pe⁺e⁻X reaction using Cherenkov Counters and an Electromagnetic Calorimeter

Transition Form Factors

$$\frac{d\Gamma_{P\to l^+l^-\gamma}}{dq^2 d\Gamma_{P\to\gamma\gamma}} = \frac{2\alpha}{3\pi q^2} \left(1 - \frac{q^2}{m_P^2}\right)^3 \left(1 - \frac{4m_l^2}{q^2}\right)^{1/2} \left(1 + \frac{2m_l^2}{q^2}\right)|_{Q.E.D} \langle \mathbf{r} \rangle = \left.\frac{dF}{dq^2}\right|_{q^2=0} \\ \frac{d\Gamma_{P_{P\to l^+l^-\gamma}}}{dq^2 d\Gamma_{P_{P\to\gamma\gamma}}}|_{\text{measured}} = \frac{d\Gamma_{P_{P\to l^+l^-\gamma}}}{dq^2 \Gamma_{P\to\gamma\gamma}}|_{Q.E.D} \left|F(q^2)\right|^2$$

$\eta' \rightarrow \gamma e + e - Branching Ratio$

BESIII $\Gamma(\eta' \rightarrow \gamma e + e^{-})/\Gamma(\eta' \rightarrow \gamma \gamma)$ (2.13±0.09(stat.)±0.07(sys.))×10-2 from 864 events [1]

CLAS preliminary BR consistent with BESIII from 89 events

[1]BESIII, M. Ablikim et al., Phys.Rev. D92 (2015) 012001

Current status of η' charge radius

Current BESIII and CLAS data sets do not have enough statistics to determine which
theoretical model fits the $\eta' \rightarrow$ charge radius

	$\langle \mathrm{r} \rangle$	Number of events
BESIII (η′→γe+e−)	1.60 ± 0.17(stat) ± 0.08(sys) GeV ^{-2 [1]}	894
CELLO (η′→γμ+μ−)	1.7 ± 0.4 GeV ⁻² ^[2]	75
CLAS (η′→γe+e−)	TBD	89

Dispersion	1.53 ^{+0.15} -0.08 GeV ⁻²	
ChPT	1.6 GeV ⁻²	
VMD	1.45 GeV ⁻²	

[1]BESIII, M. Ablikim et al., Phys.Rev. D92 (2015) 012001 [2]R. I. Dzhelyadi et al., Phys. Lett. B 88, 379 (1979)

Future CLAS e+e- pair physics

Electromagnetic structure of mesons and baryons. Currently we are benchmarking the $\eta' \rightarrow \gamma e+e-$ decay. Here is a list of initial physics to be studied

Meson	Baryon
η′→γe+e -	(∆→Ne+e−)
$\omega \rightarrow \pi^0 e + e^-$	Λ→ne+e− Λ(1520)→Λe+e−
Ф→ηе+е-	
$J/\psi \rightarrow \pi^0 e + e -$	$\Sigma^0 \rightarrow \Lambda e + e - \Sigma^+ \rightarrow pe + e -$

CLAS $\xi(e^+e^-)/\xi(\pi+\pi-)$ can be range $10^5 - 10^{11}$ CLAS e^+e^- efficiency (ϵ) range 1 - 10^{-2}

Future CLAS η' Measurement

 $M(e^+e^-\gamma)[GeV]$

 $M(e^+e^-\gamma)[GeV]$

Fully Exclusive $\gamma p \rightarrow \eta' p \rightarrow \gamma e + e - p$

Inclusive $\gamma p \rightarrow \eta'(p) \rightarrow \gamma e + e^{-}(p)$

of the Helmholtz Association

Member

Counts

600

500

400

300

200

100

0.80

ÜLICH

Future CLAS η' Acceptance

CLAS η^{\prime} Rates at low Q^2

Exclusive $\gamma p \rightarrow e^+e^-\gamma p$

Within 100 days of beam-time CLAS can measure the η^{\prime} transition form factor with a statistical uncertainty ~1%

CLAS η' Rates with electroproduction

Within 100 days of beam-time CLAS can measure the η ' transition form factor with a statistical uncertainty ~.1%

To Do

- Use GEMC reconstruction with coatjava with electroproduction
 - HTCC + EC
- Trigger studies
- Finish Φ , Δ , Σ^0 simulations
- Write proposal

Summary

- Transition form factors of pseudoscalar and vector mesons can be measured with CLAS
- Future CLAS data will provide data sets with statistics to accurately measure transition form factors and also branching ratio of e+e- decays.
 - Precision of transition form factor measurement in CLAS will determine validity of theoretical models.

BACKUP START HERE

FUTURE CLAS η' MEASUREMENT

Helmholtz Association

of the I

Member

Thomas Jefferson National 🛛 🕗 JÜLICH Laboratory

Continous Electron Beam Accelerator Facility (CEBAF) at 12 GeV

Aerial View

CEBAF Large Acceptance Spectrometer (CLAS)

