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[1] R. Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables Cx , Cz from ~γp → K+~Λ
[2] Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)
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Why Baryon Spectroscopy?

N(1900)3/2+ (which can be assigned as a member of the quartet of (70, 2+2 ) ) cannot be

accommodated in the naive quark-diquark picture, both oscillators need to be excited.[1],[2]
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Baryon Spectrum with LQCD

Known states:
N(1675)5/2-

N(1700)3/2-

N(1520)3/2-

N(1650)1/2-

N(1535)1/2-m�=396MeV

4 5 3 1

2 2 1

New '+' parity states:
N(1860)5/2+

N(1900)3/2+

N(1880)1/2+

New '–' parity states:
N(2060)5/2-

N(2120)3/2-

N(1875)3/2-

N(1895)1/2- 

N
*

R. Edwards et al. Phys. Rev. D 84 074508 (2011)

Picture courtesy V. Bukert (CLAS collaboration meeting 2015)

- - - LQCD manifests broad features of SU(6)⊗O(3) symmetry.

New states accommodated in LQCD calculations (ignoring mass scale)

with JP values consistent with CQM.
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New '–' parity states:
N(2060)5/2-

N(2120)3/2-

N(1875)3/2-
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N
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More predicted states than experimentally observed. Lot more yet to be learnt!

- - - LQCD manifests broad features of SU(6)⊗O(3) symmetry.

New states accommodated in LQCD calculations (ignoring mass scale)

with JP values consistent with CQM.

Priyashree Roy, Florida State University CLAS Collaboration Meeting, Feb 26, 2016 3 / 17



Introduction
Data Analysis and Results

Summary and Outlook
Motivation

Study of N ∗ to Vector Meson Decay Modes

Vector meson (ω, ρ, φ) decay modes have mostly remained unexplored. Vast pool of infor-

mation yet to be unearthed:

For a better understanding of known

resonances, it is essential to study their vector

meson decay modes.

They carry the same JPC as the photon so it is

highly expected that they play an important

role in the baryon spectrum.

This talk will focus on γp → pπ+π− and

γp → pω → pπ+π−(π0) reactions. The

former gives information on N∗
→ pρ which

is difficult to study directly due to the broad

nature of ρ.

Ongoing analysis on γp → pφ cross section

from CLAS-g12 (A. Hurley, FSU).

Particle Data Group 2014
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Why are Spin Observables Important?

Baryon resonances are broad and overlapping so peak

hunting is difficult. Need more observables in addition

to cross sections to disentangle the resonances.
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Why are Spin Observables Important?

Polarization observables are essential for the

determination of the scattering amplitudes with

minimal ambiguities → ‘reveal’ the baryon

resonances.

E.g., in single meson photoproduction:

σtotal = σunpol.[1− δl Σ cos(2φ)
+Λx (−δl H sin(2φ) + δ⊙ F)
−Λy (−T + δl P cos2φ)
−Λz (−δl G sin(2φ) + δ⊙ E ) + ...]

δ⊙(δl) : degree of beam pol.

Λ : degree of target pol.
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Spin Observables for ~γ~p → pπ+π− & pω @ FROST

Data taking: Oct 2007 - Jan 2008 (g9a)

Mar. - Aug 2010 (g9b)

Target: FROzen Spin butanol Target

Target pol.: Longitudinal (g9a run)/

Transverse (g9b run)

Photon pol.: Linear/Circular

Getting close to a ‘complete experiment’!

W range covered ∼ 1.5 to 2.3 GeV

pω:

pπ+π−:

Prelim. results (Priyashree, FSU)

(Analysis note under review)

Prelim. results available

(FSU, USC)

Data acquired
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Data Selection and Analysis

Topologies for pπ+π−:

~γ~p → pπ+ (missing π−)

~γ~p → pπ− (missing π+)

~γ~p → pπ+π− (no missing particle)

The observables are weighted avg. over topologies.

Topology for pω (89% branching fraction):

~γ~p → pπ+π−(missing π0)
Topology identified using Kinematic fitting.

Standard cuts & corrections: vertex cut, photon

selection, β cuts, E-p corrections.

Event-based method[1] for signal-background

separation.

Event-based maximum likelihood method[2] for

extracting polarization observables.
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Topologies for pπ+π−:

~γ~p → pπ+ (missing π−)

~γ~p → pπ− (missing π+)

~γ~p → pπ+π− (no missing particle)

The observables are weighted avg. over topologies.

Topology for pω (89% branching fraction):

~γ~p → pπ+π−(missing π0)
Topology identified using Kinematic fitting.

Standard cuts & corrections: vertex cut, photon

selection, β cuts, E-p corrections.

Event-based method[1] for signal-background

separation.

Event-based maximum likelihood method[2] for

extracting polarization observables.

Butanol

Signal

Background

Carbon

Scaled Carbon

Total

Signal

Background

1.6 - 1.7 GeV

1.3 - 1.4 GeV

[1] M. Williams et al., JINST 4 (2009) P10003
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The observables are weighted avg. over topologies.

Topology for pω (89% branching fraction):

~γ~p → pπ+π−(missing π0)
Topology identified using Kinematic fitting.

Standard cuts & corrections: vertex cut, photon

selection, β cuts, E-p corrections.

Event-based method[1] for signal-background

separation.

Event-based maximum likelihood method[2] for

extracting polarization observables.

[1] M. Williams et al., JINST 4 (2009) P10003

[2] D G Ireland, CLAS Note 2011-010

Butanol

Signal

Background

Carbon

Scaled Carbon

Total

Signal

Background

1.6 - 1.7 GeV

1.3 - 1.4 GeV
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Results

Results in ~γ~p → pω
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Published Results in γp → pω

[1] Williams et al.,

PRC 80, 065208 (2009)

[2] Wilson et al.,

arXiv:1508.01483 (2015)

[3] Sumihama et al.,

PRC 80, 052201 (2009)

[4] Barth et al.,

EPJ A 18, 117 (2003)

[5] Wolf, Rept. Prog. Phys.

73, 116202 (2010)

[6] Eberhardt et al.,

arXiv:1504.02221 (2015)

[7] Vegna et al.,

PRC 91, 065207 (2015)

[8] Ajaka et al.,

PRL 96, 132003 (2006)

[9] F. Klein et al.,

PRD 78, 117101 (2008)

+ High quality polarized SDMEs

from CLAS, Brian Vernarsky (CMU),

to be published soon.

Isospin filter (sensitive to N∗ only), reduces complexity

Priyashree Roy, Florida State University CLAS Collaboration Meeting, Feb 26, 2016 8 / 17



Introduction
Data Analysis and Results

Summary and Outlook

pω Reaction, Single- & Double-Polarization Observables
pπ+π− Reaction, Single Polarization Observables

Partial Wave Analysis of γp → pω Observables

* rating in PDG 2014

BnGa PWA 2016 
(coupled-channel) using ELSA data

Notable 
contribution

Suggestive 
evidence

CLAS PWA 2009

Notable 
contribution

Suggestive 
evidence

Pol. SDMEs and Σ were crucial

to understand the t-channel back-

ground: Major contribution from

pomeron exchange mechanism.

I. Denisenko et al., Phys. Lett. B (2016)

M. Williams et al., PRC 80, 065208 (2009)
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Partial Wave Analysis of γp → pω Observables

* rating in PDG 2014

Pol. SDMEs and Σ were crucial

to understand the t-channel back-

ground: Major contribution from

pomeron exchange mechanism.

Need more polarization observables,

in particular to understand W> 2 GeV

region:

N(∼ 2.2 GeV) Uncertain JP :

1/2−, 3/2+, 3/2− or 5/2+ ??

N(> 2.1 GeV) 7/2−?
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Beam Asymmetry Σ in ~γp → pω

σ = σ0[1−Σ δlcos(2φ)
+Λcos(α)(−δlHsin(2φ) + δ⊙F)
−Λsin(α)(−T+ δlPcos(2φ))]
−Λz(−δlGsin(2φ) + δ⊙E)]

δ⊙(δl) : degree of beam pol.

Λ : degree of target pol.

ω reconstructed from π+π−(π0)
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Beam Asymmetry Σ in ~γp → pω
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FROST: transversely polarized target

GRAAL: unpolarized target

Good agreement between FROST and

GRAAL (2006) results. New results

at high energies.

σ = σ0[1−Σ δlcos(2φ)
+Λcos(α)(−δlHsin(2φ) + δ⊙F)
−Λsin(α)(−T+ δlPcos(2φ))]
−Λz(−δlGsin(2φ) + δ⊙E)]

δ⊙(δl) : degree of beam pol.

Λ : degree of target pol.

ω reconstructed from π+π−(π0)
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First Measurements of T, P in ~γ~p → pω
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Recoil-Pol. P (FROST)

σ = σ0[1−Σ δlcos(2φ)
+Λcos(α)(−δlHsin(2φ) + δ⊙F)
−Λsin(α)(−T+ δlPcos(2φ))]
−Λz(−δlGsin(2φ) + δ⊙E)]

δ⊙(δl) : degree of beam pol.

Λ : degree of target pol.
The two experimental results on target

asym. T from FROST agree well.
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First Measurements of F, H in ~γ~p → pω
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cos

σ = σ0[1−Σ δlcos(2φ)
+Λcos(α)(−δlHsin(2φ) + δ⊙F)
−Λsin(α)(−T+ δlPcos(2φ))]
−Λz(−δlGsin(2φ) + δ⊙E)]

δ⊙(δl) : degree of beam pol.

Λ : degree of target pol.
F and H are double-polarization observables.
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Published Results + New Results in γp → pω

+ High quality pol. SDMEs

from CLAS, B. Vernarsky (CMU),

to be published soon.
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pπ+π− Reaction, Single Polarization Observables

Published Results + New Results in γp → pω

+ High quality pol. SDMEs

from CLAS, B. Vernarsky (CMU),

to be published soon.

Getting close to a ‘complete experiment’!
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Results

Results in ~γ~p → pπ+π−
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pπ+π− Reaction, Single Polarization Observables

Results in ~γ~p → pπ+π−

Allow the study of sequential decays of intermediate N∗ and also N∗ → pρ
decay but the large hadronic background makes it challenging.

Reaction described using 2 planes (5 kinematic variables) → more spin

observables than in single-meson photoproduction using polarized beam

and target.

Priyashree Roy, Florida State University CLAS Collaboration Meeting, Feb 26, 2016 14 / 17



Introduction
Data Analysis and Results

Summary and Outlook

pω Reaction, Single- & Double-Polarization Observables
pπ+π− Reaction, Single Polarization Observables

Results in ~γ~p → pπ+π−
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Allow the study of sequential decays of intermediate N∗ and also N∗ → pρ
decay but the large hadronic background makes it challenging.

Reaction described using 2 planes (5 kinematic variables) → more spin

observables than in single-meson photoproduction using polarized beam

and target.

2 beam-pol. observables: Is, Ic

Unlike only one (Σ observable) in

single-meson photoproduction.

Is vanishes, Ic survives.

W. Roberts et al., Phys. Rev. C 71, 055201 (2005)
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pω Reaction, Single- & Double-Polarization Observables
pπ+π− Reaction, Single Polarization Observables

Beam Asymmetry Is in ~γp → pπ+π−

-1

1

-1

1

Pre
lim

ina
ry

) <-0.8+π
θ-1.0< cos(

) <0.2+π
θ0.0< cos(

) <-0.6+π
θ-0.8< cos(

) <0.4+π
θ0.2< cos(

) <-0.4+π
θ-0.6< cos(

) <0.6+π
θ0.4< cos(

) <-0.2+π
θ-0.4< cos(

) <0.8+π
θ0.6< cos(

) <-0.0+π
θ-0.2< cos(

) <1.0+π
θ0.8< cos(

-1

0

1

-1

0

1

-2 0 2-2 0 2-2 0 2-2 0 2-2 0 2

+π
φ

I

-1

-0.5

0

0.5

1
Is

1300-1350

cosθ (-1 -0.8)

1300-1350

cosθ (-0.8 -0.6)

1300-1350

cosθ (-0.6 -0.4)

1300-1350

cosθ (-0.4 -0.2)

1300-1350

cosθ (-0.2 0)

-1

-0.5

0

0.5

1
1300-1350

cosθ (0 0.2)

1300-1350

cosθ (0.2 0.4)

1300-1350

cosθ (0.4 0.6)

1300-1350

cosθ (0.6 0.8)

1300-1350

cosθ (0.8 1)

-1

-0.5

0

0.5

1
1350-1400

cosθ (-1 -0.8)

1350-1400

cosθ (-0.8 -0.6)

1350-1400

cosθ (-0.6 -0.4)

1350-1400

cosθ (-0.4 -0.2)

1350-1400

cosθ (-0.2 0)

-1

-0.5

0

0.5

1

-90 0 90

1350-1400

cosθ (0 0.2)

-90 0 90

1350-1400

cosθ (0.2 0.4)

-90 0 90

1350-1400

cosθ (0.4 0.6)

-90 0 90

1350-1400

cosθ (0.6 0.8)

-90 0 90

1350-1400

cosθ (0.8 1)

φ(π+)

FROST (preliminary) C. Hanretty et al. , CLAS-g8b run
(in preparation for publication)

Fourier sine fit to g8b
BnGa fits to Is, CLAS-g8b run

Example: 1.30 < Eγ < 1.40 GeV (Total Eγ range covered: 0.7 - 2.1 GeV)

Good agreement between experiments

I =I0{δl[I
ssin(2β) + Iccos(2β)]}

Priyashree Roy, Florida State University CLAS Collaboration Meeting, Feb 26, 2016 15 / 17



Introduction
Data Analysis and Results

Summary and Outlook

pω Reaction, Single- & Double-Polarization Observables
pπ+π− Reaction, Single Polarization Observables

First Measurements of Target Asym. Px,y in γ~p → pπ+π−
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Example: 1.3 < Eγ < 1.4 GeV (Total Eγ range covered: 0.7 - 2.1 GeV)

FROST g9b (lin. pol. beam) Solid Line - Fourier fit ( n < 3 )

3-dim. phase space: (Eγ , φ∗

π+ , cosθ∗
π+)

I = I0[1 + Λcos(α)Px + Λsin(α)Py]
Λ : degree of target pol.
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Summary and Outlook

Photoproduction of vector mesons and multi-pion final states:

essential to discover new resonances and better understand the known

resonances. These decay modes have mostly remained unexplored in the

past.

Many first time measurements of single- and double-polarization

observables from CLAS-FROST for ~γ~p → pω and ~γ~p → pπ+π−:

they will significantly augment the world database of polarization

observables in photoproduction.

The new high quality CLAS results are expected to put tight constraints on data

interpretation tools, immensely aiding in determining contributing N∗ with

minimal ambiguities.

The findings in the light baryon sector together with the findings in strange and

heavy flavor sectors (GlueX, LHCb, BES III etc.), will help us understand the

evolution of bound states of QCD from light to heavy-quark regime.
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Any Questions ?
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Why are Spin Observables Important?

C
x
, C

z

cos�
K

C
x
, C

z

cosθ
K

[1] R. Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables Cx , Cz from ~γp → K+~Λ
[2] Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)

Fits without N(1900)3/2+ resonance

Better Fit Results with N(1900)3/2+!

Sophisticated data interpretation tools such as Partial Wave Analysis and

Phenomenological models are required to identify the contributing resonances.
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Beam Asymmetry Ic in ~γp → pπ+π−
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Example: 1.30 < Eγ < 1.40 GeV

Good agreement between experiments

I =I0{δl[I
ssin(2β) + Iccos(2β)]}
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Photoproduction Cross Section

Priyashree Roy, Florida State University CLAS Collaboration Meeting, Feb 26, 2016 17 / 17



Introduction
Data Analysis and Results

Summary and Outlook

Vertex cut
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Event-Based Qfactor Method with Likelihood Fits

A multivariate analysis - For each event ("seed event"), find N nearest

neighbors in 4-D kinematic phase space (Eγ , θ
∗, φ∗, cos(θp)

c.m.). Plot mass

distribution of the N + 1 events and fit.

Since N is small (300), use ML method to fit the mass distribution.

L =
∏

i

[fSignal(mi, α) + fBkg(mi, β)]

Qseed−event =
fSignal(m0,α

best)
[fSignal(m0,αbest)+fBkg(m0,βbest)]

,

m0- seed event’s mass.

Computation time reasonably minimized- fits 10,000 events in 30 min.
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