Λp Elastic Scattering with CLAS

John Price California State University, Dominguez Hills

Outline

- Motivation
- Data skim
- Event ID
- Plans

HadLab Undergrads

Original Motivation

- Search for Ξp scattering
 - Possible to directly measure $\Pi(\Xi^{\text{-}})$
- Not enough events
 - Expected to see roughly 4 in g12
- Need to wait for CLAS12
- Meanwhile, we should check to see whether this is a crazy idea...

New Motivation

- Instead, look for Λp scattering
 - Test for eventual Ξp search
 - Astrophysical interest
- Benefits compared to Ξp
 - Higher Λ production rate
 - Higher acceptance (fewer final-state particles)
 - Expect to see (optimistically) about 4700 in g12

Previous data

- Not much; all bubble chamber data
 - Taken from 1959 to 1975
 - About 1200
 events total
 - ~50% error bars
- We can do better, right?
- RIGHT?

g12 skim

- Full process:
 - $\gamma p \rightarrow K^+ \Lambda; \Lambda p \rightarrow \Lambda p (\Lambda \rightarrow \pi^- p)$
 - Final state: $K^+\pi^-pp$
- Skim for events with *pp* in final state
 - Apparent baryon # violation = rescattering signal
 - Reduces size of dataset from 126 TB (raw) to 17 GB (cooked)
 - HadLab cluster takes ~12 minutes to analyze

Event topology

- Expected event:
- Plan: <u>γ</u>
 - Look for $K^{\scriptscriptstyle +}\Lambda$
 - Find scattered p
 - Look for scattered Λ in missing mass

Looking for Lambdas...

- Look for $K^+\Lambda$
- Really, really unimpressive
 - "impressively unimpressive"

- Spent ~2 years looking for stupid mistakes
- As it turns out, *that* was the stupid mistake

Still looking for Lambdas...

- We know they're there
- Why can't we find them the way everyone else does...?

- We're not doing what everyone else does!
 - We have two protons in our event
 - The Λ is going down the target to rescatter on a second proton

Why we're not finding them

 If the Λ is going straight down the target, so is the kaon!

- Momentum is conserved
 - Remember freshman mechanics...?
- We shouldn't see completely reconstructed events in *g12*
 - Let's stop trying...

On the right track...

- Instead of looking for the Λ in $\gamma p \rightarrow K^+X$, look for it in $Xp \rightarrow \Lambda p$
- Now, it's almost "easy"
- Haven't done much with this yet, but we have more than 2000 events
- Almost nothing has been done to clean up this plot
 - Background should get significantly smaller

Why / think this is so cool...

- Let's recall the last crazy thing I did here
- 1999: $\gamma p \rightarrow K^+ K^+ \Xi^-$
 - We all knew it was impossible
 - Many of you told me so several times in 1998
 - Yet, there it is...
- The signal for ∧ p → ∧ p is significantly larger compared to the background

Λ properties

- Get KE, θ of the Λ
 - Background unsubtracted
- Use to understand whole process
- Perhaps we "should" see the K⁺…
- Maybe we're looking at the wrong photon?
- Still under study

Comparison to old data

- Our data runs from about 750 MeV/c to about 2.5 GeV/c
- Remember, this is a data mining measurement

• With a dedicated experiment, we should be able to improve in both directions

Calculating a cross section

- Remember basic formula: $\sigma = \frac{N_e}{N_{\mu}N_{\mu}A}$
- N_e comes from analysis
- N_b comes from $\gamma p \rightarrow K^+ \Lambda$ cross section
 - Subtlety: need data in terms of Λ momentum, angle
- N_t , A come from simulation
- Should be doable "soon"...

Further down the line

- This represents a Λ "beam" in CLAS
- Lots of potential spectroscopy work
- Planning PAC proposal
 - Dedicated experiment to optimize flux, acceptance
 - Need special geometry for target
 - Collaborators welcome

New target concept

- Need a new target
 - "primary" LH₂ target
 - "secondary" other target
 - Maximize acceptance by making secondary target a "shell" around the primary

- "Easy" for solid targets; not so much for LH₂/LD₂
- Need engineering design in any case

Summary

- What I don't know
 - Λ flux (and therefore cross section)
 - Can use $K^+\Lambda$ cross section to estimate
- What I "think"
 - We have observed Λp elastic scattering
 - I could still be fooling myself...suggestions?
 - Statistics greater than twice the world sample
 - We can do it better with a dedicated experiment
 - This is kind of a Big Deal
- What I "know"
 - This looks like the coolest thing I've ever done...