JLab Accelerator Overview

CLAS Collaboration Meeting Feb 23-26, 2016 Jefferson Lab Michael Tiefenback, CASA

with grateful acknowledgment of material from others --"Thank You" to all

Outline:

- Accelerator Operations
 - Summer 2015 -- Fall 2015
 - Outlook for Spring 2016 Fall 2016
- SRF C100 controls improvements
 - energy jitter and vibration sensitivity
- Support for accelerator operations
 - CASA and Engineering/Diagnostics
 - Accelerator startup and operational tasks
 - Diagnostic systems and applications
 - Recent commissioning work/results
- Upcoming developments

Summer 2015: Final 12 GeV Preparations

12GeV Project related tasks:

Cryo CHL2 Heat exchanger installation Facilities Arc tunnel air-conditioning.

OPS tasks:

Cryo Repaired 2K cold box (SCM) via the SNS spare cold compressor.

DCpower Dogleg upgrade.

RFpower&Software 750Mhz separator cavities.

SRF Helium processing of the majority of CEBAF cavities. IC&Software Hall-D Fastback, nA BPMs

Utilities Infrastructure and Modernization (UIM) tasks:

Facilities Upgraded cooling towers on accelerator site.

Fall2015 Goals:

- Systematic, deliberate, sequential machine setup at design energy.
 - Quad center every Quad-BPM combination with beam.
 - Minimize Arc orbit offsets, utilize the upgraded Dogleg system.
 - Beam matching at the entrance to each ARC.
- Establish 12 GeV CW beam operations to the Hall-D tagger vault.
- Measure beam parameters (ε , bunch length, TWISS parameters) at design energy.
- Evaluate energy reach, minimize trip rate.
- Establish 11 GeV separation, required to support 5th pass separation of A/B/C beam simultaneously with beam to Hall-D.
- Establish high power CW operations to Hall-A at 11 GeV.
- Establish the machine setup for Spring 2016 Physics program

Gradient Distribution at 12 GeV

Dec 17 2015: RF trips < 5 trips/h RF and arc1/arc2 status at: 2015-12-17 05:00

Linac	Туре	Ncav	<gmes></gmes>	GMES _{RMS}	Min-Max	Egain
			(MV)	(MV)	(MV)	(MeV)
Inj	C20	8	8.24	2.15	4.96-11.02	33.0
Inj	C100	8	15.87	0.22	15.49-16.01	88.9
NL	C20	120	6.57	1.73	2.97-11.48	394.1
NL	C50	40	10.12	3.20	4.40-13.98	202.4
NL	C100	39	17.57	2.43	10.62-21.00	479.6
SL	C20	106	7.44	1.78	2.96-12.01	394.5
SL	C50	45	11.13	1.78	6.13-13.85	250.5
SL	C100	38	15.69	2.20	10.53-18.20	417.3
	т •		•	5 a		

Linac	Egain	Σ_E	Spectrometer	Momentum
	(MeV)	(MeV)		(MeV/c)
Injector:	121.86	121.86	INJ:p	121.35
North Linac:	1076.04	1197.91	Arc1:p	1212.98
South Linac:	1062.35	2260.26	Arc2:p	2302.92

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

A. Freyberger 5

The Struggle: Trip Rate OK!

November 9 - December 21, 2015

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

A. Freyberger 6

SRF C100 Improvements

- Cavity controls being updated to improve
 - Energy jitter
 - Vibration sensitivity
- Master Oscillator stability improved
 - Temperature stability, water flow control
 - Improvements in certain narrow-band disturbances (27Hz?)
- Collaborative work involves staff from many areas
- Significant improvements already seen
- More expected

- Laser table upgrade to support 4-hall simultaneous running
- Install and commission C50-12
- Repair MYR6T02: Magnet coil leak. Found yesterday. No 3rd-pass extraction until repaired.
- Low power bill operations
 - ▶ 1.1GeV/pass, 1-pass beam for Hall-B (PRad)
 - Injector Bubble Chamber engineering run
 - 1.1GeV/pass, 5-pass beam for Hall-C pre-checks

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Summary

- 12 GeV CEBAF CW operations have been established.
 - Spring 2016 Physics program will be at the design energy.
- RF separation on 5^{th} pass (11 GeV) has been established.
 - ▶ Enables simultaneous Hall-D and A, B, or C operation on 5th pass.
 - Presently limited to 3-hall operation, due to laser table configuration.
- Effort to improve CEBAF Reliability on-going.
 - Energy reach is a constant concern and requires vigilance.
 - A new cryomodule refurbishment program that provides 75MeV/cryomodule (C75) per year will increase the gradient margin.
 - CEBAF Downtimes are tracked and analyzed.
 - Performance data is used to develop near term fixes, annual work plans and long-term projects.
- Laser table upgrade planned for Summer 2016.
 - Four operations at design energy planned for Spring 2017.

CASA and CEBAF Operations

- CASA presently provides 2+ FTEs to CEBAF operations
 - Distributed among 6-7 participants
 - Commissioning support higher
- CEBAF Model Team
 - Optics model/lattice layout, design, controls integration
- Beam Transport Team (BTeam)
 - Operational review of tuning, optics, beam quality
 - Beam Studies forum
- Weekly optics on call rotation during CEBAF operations
 - Primary and backup opticians 24/7 for operations
 - Primarily for main accelerator transport retuning issues
 - e.g. diagnose beam jitter (identify subsystem support)
 - separate on-call support by injector and hall optics (APELs)

APELs

- Accelerator Physics Experiment hall Liaisons
 - Hall A: Yves Roblin
 - Hall B: Michael Tiefenback
 - Hall C: Jay Benesch
 - Hall D: Todd Satogata
- Responsible for beam delivery and hall integration
 - Point person for hall beam tuning/beam quality every run
 - Evaluate/coordinate all hall experiment beam requirements
 - Design and improve beamlines/diagnostics/procedures
 - Works closely with similar liaison from Operations
 - Often a member of hall experiment collaborations

CEBAF 12 GeV Beam Physics

- CASA organized the detailed
 12 GeV beam commissioning
 plan
 - Multi-year development plan
 - Successive beam diagnostics calibrations and measurements throughout
 - All CASA personnel engaged
 - Updates indicated progress through successive runs
 - Planned carefully
 - Performed as planned

12 GeV Beam Commissioning Plan

Document Number: MCC-PR-01-010 Revision Number: Rev. 4; March 10, 2014 Technical Custodian: Michael Spata

1

2

Over	view
1.1	Introduction
1.2	Document Philosophy 5
1.3	Global Prerequisites 5
Inject	tor
2.1	Prerequisites
2.2	Beam to Polarized Source Faraday Cup
	2.2.1 Initial Beam Threading 6
	2.2.2 Beam Diagnostics Calibrations and Measurements 6
	2.2.3 High Level Applications and Configuration Finalization 6
2.3	Beam to Faraday Cup #1 6
	2.3.1 Initial Beam Threading 6
	2.3.2 Beam Diagnostics Calibrations and Measurements 7
	2.3.3 High Level Applications and Configuration Finalization 7
2.4	Beam to 500 keV Spectrometer Beam Dump 7
	2.4.1 Initial Beam Threading 7
	2.4.2 Beam Diagnostics Calibrations and Measurements 7
	2.4.3 High Level Applications and Configuration Finalization 7
2.5	Beam to Faraday Cup #2 8
	2.5.1 Initial Beam Threading 8
	2.5.2 Beam Diagnostics Calibrations and Measurements
	2.5.3 High Level Applications and Configuration Finalization $\underline{8}$
2.6	Beam to 6.3 MeV Spectrometer 8
	2.6.1 Initial Beam Threading 8
	2.6.2 Beam Diagnostics Calibrations and Measurements
	2.6.3 High Level Applications and Configuration Finalization 9
2.7	Beam to the 123 MeV Spectrometer
	2.7.1 Initial Beam Threading 9
	2.7.2 Beam Diagnostics Calibrations and Measurements
	2.7.3 High Level Applications and Configuration Finalization 10
2.8	Beam to the 0R08 In-line Beam Dump <u>10</u>
	2.8.1 Initial Beam Threading <u>10</u>
	2.8.2 Beam Diagnostics Calibrations and Measurements <u>10</u>
	2.8.3 High Level Applications and Configuration Finalization 10

12

T. Satogata

CEBAF Detail Schematic

CEBAF Detail: Transverse Matching

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

Model-Based Optics Rematch

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

CEBAF Detail: Bunch Length Compression

CEBAF Detail: Arc Transport and M₅₆

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

Initial Year's Beam Requirements

	Hall	Emittance	Energy Spread	Spot Size	Halo
S			σ	σ	
lent		(nm-rad)	(%)	(μm)	
en			< 0.05	$\sigma_x <$ 400	
uir	Α	$\varepsilon_x < 10$	(12 GeV)	$\sigma_y < 200$	$< 1 imes 10^{-4\dagger}$
ed		$\varepsilon_y < 5$	< 0.003	$(\sigma_y < 100)$	
			(2-4 GeV)	(2-4 GeV)	
Ŭ.					
, 11	В	$\varepsilon_x < 10$	<0.1	$\sigma_x <$ 400	$< 2 imes 10^{-4\dagger}$
ass		$\varepsilon_y < 10$		$\sigma_y <$ 400	
d 0	С	$\varepsilon_x < 10$	<0.05	$\sigma_x < 500$	$< 2 imes 10^{-4\dagger}$
<u>о</u> .		$\varepsilon_y < 10$		$\sigma_y <$ 500	
				At Radiator:	
5.5 pass	D	$\varepsilon_{x} < 50$	<0.5	$\sigma_{m{x}} <$ 1550, $\sigma_{m{y}} <$ 550	$< 1\%^{\ddagger}$
12GeV		$\varepsilon_y < 10$		At Collimator	
		-		$\sigma_x <$ 540, $\sigma_y <$ 520	

Physics beam requirements transmitted to CASA in 2007.

Initial Years Beam Requirements Met!

Physics beam requirements transmitted to CASA in 2007.

Emittance/Optics Campaign Strategy

- Incorporated into 12 GeV optics commissioning
 - Measure in all (available) matching regions
 - Single quad → single wire scanner measurements
 - Improve automation, model integration in 6 GeV tools
 - Measurement/match: 6-8 hours (expert) → 1 hour (operators)
- Additional benefits
 - Matching more systematic and consistent through CEBAF
 - Faster measurements can be performed more routinely
 - e.g. comparison of different lasers, space charge effects
 - "Parasitic" beam emittance data from every scan/rematch
- 12 GeV data shown: Fall 2015-present

Model-Based Optics Rematch

Before match, as found

After match

All data plotted is the projected beam ellipse in (x,x') at start of an upstream scanned quad

This data is for Arc 9 spreader

Blue and green ellipses are measurement

Red is online model prediction

Excellent agreement

21

Jefferson Lab

T. Satogata

12 GeV Horizontal Emittances

- Horizontal emittances within all specifications
 - Usually within factor of two of design (often better)
 - Synchrotron radiation-driven emittance growth as predicted

12 GeV Vertical Emittances

- Vertical emittances also within all specifications
 - Synchrotron radiation-driven emittance growth also as predicted

Emittance Observations

- Detailed top-to-bottom error analysis in progress
 - Randoms: harp noise, carriage jitter, magnet regulation
 - Systematics: harp scaling, magnet transport, procedural clarity
- Randoms are small (~few %) vs potential systematics
- Observed large uncertainties in harp carriage transport scaling (up to 50%)
 - Miscalibration of linear potentiometer vs stepper travel
 - Contributes quadratically to calculated emittance
 - Does not substantially alter match parameters
 - Data shown includes pot/stepper angle correction
- Quantify/cross-calibrate with non-blooming viewers

Emittance Growth Scaling and Mitigation

$$\Delta \epsilon \approx 2 \times 10^{-27} \left(\frac{\gamma^5}{\rho[\mathrm{m}]^2} \right) \langle \mathcal{H} \rangle$$
$$\sigma_{\mathrm{E}}^2 \approx 1.2 \times 10^{-33} \,\mathrm{GeV}^2 \left(\frac{\gamma^7}{\rho[\mathrm{m}]^2} \right)$$

rms, geometric 180° multi-cell bend

Sands 1985, Douglas 1997

- Arc focusing very flexible: separate power supplies for all 32 arc quads
- Traditional CEBAF FODO cells → DBA cells in higher arcs
- **30-40%** reduction in $\langle \mathcal{H}
 angle$
- Tested in 2013-2014 11 GeV

25

 Dispersion/pathlength coupling through M₅₆

T. Satogata

Bunch Length Measurements

- Linac gang phase vs SLM dispersive bunch size
- Short bunches even without injector compression
 - Limit nonlinear halo, momentum spread in lower passes

6 GeV Existing Diagnostics

Beam Viewers

Antenna-Style Beam Position Monitor

Pathlength Cavity

Beam on Viewer in Chicane

Wire Scanner and Electronics

Wire Scanner Forks

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

New 12 GeV Diagnostics

Stripline Beam Position Monitor

Synchrotron Light Monitor

Stripline BPM on Stretched-Wire Test Stand

Typical Results from BPM Test Stand

28

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

Hall B: 1-pass Halo (1 GeV)

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Hall D: 5.5-pass Halo (10.5 GeV)

A. Freyberger

Viewer/SLM Profile Diagnostics

- Quantitative tools under development
- SLMs provide real-time parasitic jitter comfort display

New Pathlength Data System

- Longitudinal 1497 MHz cavities, each linac exit (time of arrival monitor)
- Resolution ~50 um •
- Calibrated this run •
- **EPICS** connected to • archiver for long-term pathlength studies
- Internal current • normalization enables laser-to-laser comparison
- Differential time of flight, • precise time-of-flight cavity gradient checks
 - Master Oscillator Modulation (MOMod) recommissioning and RF cresting development upcoming

32

Future: RayTrace

- RayTrace: launch/measure pseudo-emittance rays
 - Localize errors more precisely than other ORFP techniques
 - Can provide robust, fast, large-scale transport matching
 - Does **not** obviate need for beam/transport match
- In need of substantial tool development
 - Similar to successful evolution of quad scan emittance/

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

T. Satogata

Diagnostic Developments

- Fast FeedBack for Hall D with Digital Receiver BPMs
 - Stripline pickups for higher sensitivity
 - Cavity pickups for very low currents
 - Adaptable to 3 GHz pickup to avoid 1497 pollution?
 - Low current implementation (useful for Hall B?)
- Additional synchrotron radiation imaging stations
- Improving systems for image analysis and use
 - providing flexible controls for image aquisition

Stripline BPMs

- Position calculated as difference-oversum
- 100um resolution
 120Hz bandwidth
 330 nA of beam

26 Striplines IPMBS00 IPMBS01 IPMBS02 IPMBS03 IPMBS04 IPMBE01 IPMBE02 IPMBE03 IPMBE04 IPMBT01 **IPMBT02** IPMBT03 **IPM5C00** IPM5C01 **IPM5C02** IPM5C03 IPM5C04 IPM5C05 **IPM5C06 IPM5C07** IPM5C08 IPM5C09 IPM5C10 IPM5C11 **IPM5C11B IPMAD00C**

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Cavity BPMs

- IPM5C11A at shield wall, IPMAD00 at Goniometer
- Positions calculated as X/I & Y/I
 - Signal disappear at boresight
 - X&Y phase shift 180° at zero crossing
 - Phase indicates positive or negative position
- 100um resolution 120Hz bandwidth 1nA of beam
- Beam time needed for commissioning and response characterization

HW Testing: 60Hz Suppression

- Line-synchronized Feedforward suppression
- Proved hardware capable of canceling motion

IPM5C07 Stripline Frequency Response

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Accelerator Physics Summary

- CASA continuously supports 12 GeV CEBAF operations
 - Optics and analysis support, beam studies program
- 12 GeV CEBAF program meets beam requirements
 - Systematic transverse match, emittance, bunch length measurements
 - Synchrotron-radiation emittance growth understood
- 12 GeV diagnostics being re-commissioned, newly commissioned, and in continuing development
 - SLMs, stripline BPMs are operational successes
 - Working towards 6D tomography, rayTrace global match

Accelerator Status

- Meeting requirements
- Developing plans to handle emerging issues
 - Vibration sensitivity
 - More rapid recovery to gradient for C100s
- Developing procedures to use new capabilities
 - Improved beam timing diagnostics
 - FFB expansion to HallD
 - Additional features of new BPMs
- The land of opportunity

Incoming Beam Characterization (2C04)

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Faraday Cup Viewer (Chromox/YAG/OTR)

CLAS Collaboration Meeting, Jefferson Lab, Feb. 23-26, 2016

Michael Tiefenback

Target Plane Harp (HPS)

