

I D E A FUSION

Old Dominion University 2016

Comparing proton and neutron momentum distributions in³He using the Large Angle Calorimeter (LAC)

Student Mariana Khachatryan Supervisor Lawrence Weinstein

Measure momentum distribution in A=3 (e,e'N)

Scatter electrons from 3He and detect knocked out n or p

neutrons in ³H.

From isospin symmetry the momentum distribution of p in ³H should be equal to that of n in ³He.

Majority	Minority
p in ³ He	n in ³ He
n in ³ H	p in ³ H

The power of ratios

Quasielastic events are at $\theta_p > 45^\circ$ \implies Need LAC!

HALL B neutron detection with LAC

LAC local x and y views

 $-30 < \phi < 90$ Sectors 1,2

Rarely used

LAC timing with calibration constants from "calib.RunIndex"

E2a 2.26Gev He4

LAC timing resolution

Need more precise time calibration of LAC!

Need to recook the data to include individual TDC information for all PMTs

LAC timing with calibration constants from e1c (run 17748) E2a 4.46Gev He4

LAC timing with calibration constants from e1c (run 17748) E2a 4.46Gev He4

11th and 12th x stacks of LAC <u>S2</u> module

LAC timing with calibration constants from e1c (run 17748)E2a 4.46Gev He4Cut on single TOF

LAC timing with calibration constants from e1c (run 17748)

Time calibration of Time Of Flight detectors (TOF)

Run 17920 ⁴HE 4.46 GeV

Before time calibration

The timing of first 24 TOF paddles of 6 CLAS sectors as seen with e⁻

After time calibration

First look at the data

Use e2a ³He(e,e'p) and ³He(e,e'n) to compare n(p_n) and n(p_p)

To compare these:

Correct (e,e'n) for detection efficiency (not done)

- Smear (e,e'p) with n resolution (not done)
- Apply standard cuts and corrections (not done)

• Require
$$45^\circ < \theta_p < 75^\circ$$

 $^{3}He(e,e'n)$

Double ratio n/p 3He/4He

Cuts and corrections

- 1.e⁻ momentum corrections
- 2.e⁻ fiducial cuts
- 3. Vertex corrections
- 4.n detection efficiency
- 5.e⁻,p particle ID
- 6.p energy loss correction

Vertex corrections

e⁻ fiducial cuts and momentum correction

Used from Zehang thesis

p momentum energy loss correction

MM(e,e'pp)n

Before e⁻,p momentum corrections

After e⁻,p momentum corrections

Cuts on reconstructed neutron are

- 1. $0.9 \le \text{Missing Mass} \le 1$
- 2. φ_{recons} , θ_{recons} . cuts
- 3. Vertex cuts

Cuts on detected neutron are

- 1. n_beta_det ≤ 0.95
- 2. φ, θ cuts
- 3. -0.3 GeV/c \leq p-pmiss \leq 0.3 GeV/c
- 4. Angle between recons. and det. neutrons <5°

Conclusions

Want to measure $\frac{{}^{3}He(e,e'n)/{}^{3}He(e,e'p)}{{}^{4}He(e,e'n)/{}^{4}He(e,e'p)}$ using e2a and e2b

- Calibrated EC for e2b
 - Quasielastic neutrons at 2.2 and 4.7 Gev miss the EC

- Have studied LAC timing.
 - LAC timing is satisfying with calibration constants from e1c
 - Tof timing was poor calibrated, thus it was recalibrated.
- Have recooked e2a experiment data

> e2a
$$\frac{{}^{3}He(e,e'n)/{}^{3}He(e,e'p)}{{}^{4}He(e,e'n)/{}^{4}He(e,e'p)}$$
 (2.26 GeV)

- First glance looks good
- Analysis ongoing [e2b to come]

What are SRC?

2N-SRC are pairs of nucleons with;

- with small distance between each other(~10⁻¹⁵m)
- High relative momentum and small center of mass momentum with respect to Fermi momentum(250-270 MeV/c)

N(k)/A calculated by Schiavilla et al.(1986) in A=2,3 and 4 nuclei and nuclear matter (NM).

n-p pairs dominate over p-p,n-n pairs.

- n-p(90%)
- p-p(5%)
- n-n(5%)
 - Almost all high momentum nucleons belong to SRC pairs
 - Not described by I.P.M. (the motion of the nucleon is not affected by the other individual nucleons)

Hall A experiment

Will study majority and minority nucleon (p in ³He and p in ³H) momentum distributions in A=3 asymmetric nuclei.

 $p_{miss}=p_{initial}$, only if there are no final state interactions or other interactions.

Kinematics:

•
$$x = \frac{Q^2}{2m\omega} > 1$$
 to suppress Delta production.

- High Q^2 ($Q^2 \sim 2(GeV/c)^2$) to minimize meson exchange currents (MEC)
- ♦ Small $\theta_{rq} < 40^{\circ}$ (angle between recoil momentum and momentum transfer) to suppress Final State Interactions

LAC timing with calibration constants from "calib.RunIndex"

Rotate x,y coordinates to local coordinates

LAC timing after offset correction E2a 2.26Gev He4

Photon β in LAC

The mean values of photon eta distributions as a function of LAC x stacks in S1 and S2

$$\frac{d\beta}{\beta} = -\frac{dt}{t} \Rightarrow \Delta\beta \approx 0.004 \text{ corresponds to } \Delta t \approx 80 \text{ ps}$$

e⁻, proton Z_{vertex} differences

The difference between detected and recons.

neutron momenta

Time calibration of Time Of Flight detectors (TOF)

Run 17920 ⁴HE 4.46 GeV

Before time calibration

After time calibration

