

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others)

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr Raphaël Dupré

On behalf of the ALERT group

The EMC Effect

- Modification of bound nucleons at the partonic level
 - The effect has been measured at several facilities with great precision in light nuclei since JLab E03-103 experiment
- An unexplained effect
 - Many models explain the data similarly well with no resolution in sight by just reducing errors \rightarrow need new observables

Main Focus of ALERT Proposals

- Tagged EMC
- DVCS for 3D EMC
- Phi production for gluon EMC

The Spectator Mechanism

Spectator recoil nucleon

- Part of the nuclei that do not interact with the virtual photon and other hadronic products of the reaction
- Necessitate to control final state interactions with hadrons produced and nucleon knocked out
- Need to select the right kinematic (usually backward and moderate momentum)
- Used by the BoNuS experiment successfully for neutron PDF

Spectator recoil nuclei

- The integrity of the recoil nuclei gives an extra guaranty against FSI
- But reduced at high momentum

Spectator Detection

• CLAS12

 The central detector of CLAS12 will not be able to detect the recoil spectators at low enough energy

BoNuS

- The radial time projection chamber has great capabilities in order to detect slow recoils
- One important issue is the limited identification capabilities
- In particular 3He and 3H give very similar signal because we measure P/Z only

ALERT Detector

ALERT Detector

- Hyperbolic drift chamber
- Scintillators for TOF and total energy measurement

GEANT 4 simulation

 To define the characteristics of the chamber (See Whitney's talk for recent progresses)

Still to be done

- TOF system geometry to be finalized
- Electronics options to be evaluated
- Mechanical integration on going

Detection Capabilities

Capabilities at very low momentum

- Down to ~60 MeV for protons / 160 MeV for 3He
- Goes to very large angle forward and backward (25° from the beam)
- Most of the limits are due to recoil stopped in target
- Target is planned to be only 3 atm, 0.5 cm radius with 15 μm kapton walls

Capabilities to handle high rates

- Short drift time <250 ns (5 µs in RTPC)
- Translate into an average 0.6 background track per event for 3 MHz of protons (10 in RTPC)

Design and Prototyping

Stereo angles makes everything more complicated

Design and Prototyping

J. Bettane (IPN Orsay)

First prototype is designed and being ordered

Orsay Tests

Progress in Orsay:

- 3D printed tests
- Soldering wires on curved surface
- Gluing and soldering carbon wires

The proposals

• Going to next PAC as a run group:

- Tagged EMC
- Nuclear DVCS
- $-(\Phi \text{ production})$
- (Deuteron and neutron DVCS)
- Others?
 - Tagged Form Factors
 - Everybody is welcome!

• We have regular meetings

Let us know if you want to be on the list

Testing the Spectator Model

First step is to test the spectator model

- Can be tested on a large spectrum with very good precision
- Comparison of Helium and Deuterium targets
- First look at the helium low energy FSI in such process
 - C. Ciofi degli Atti, L. P. Kaptari, and S. Scopetta, Eur. Phys. J. A5, 191 (1999)

Rescaling x or Q²?

Rescaling models

- Impossible to differentiate x and Q2 rescaling with inclusive measurements but gives strong signature with semi-inclusive
- Comparison of D to 4He is particularly interesting, no isospin issues but already strong EMC effect!
- We will be able to give clear confirmation or exclusion for these models

Local EMC Model

• EMC effect due to local conditions and shell of the nucleon

- In this model EMC effect is due to the cancellation of much larger effects that can be separated with spectator detection
- We will be able to give clear confirmation or exclusion for this model
- For all these we need to make sure we have 3He not 3H!
 - Needs ALERT detector

Nuclear DVCS

Helium is Spin 0

- makes for simple extraction of GPDs
- See in Mohammad talk the first exclusive data
- Already a model independent extraction of H!
- 3D imaging of the EMC effect
 - Is it in the center, on the outside or everywhere?

Access to "forbidden" regions

- x>~0.25 similar to x>1 physics
- Can probe the structure of SRC pairs

Ad Hoc generator based on our 6 GeV data

- Used to estimate count rates and kinematics
- To be compared with other models

DVCS event generator

We generate events uniformly in the following ranges: $Q^2 = [1, 10.0] \text{ GeV2/c2},$

xB = [0.04, 0.7],

phi = [0, 360] deg.

Then the produced events are weighted by this cross section parameterization:

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = (\frac{Q_0^2}{Q^2})^{\alpha} * \frac{1}{1 + (\frac{x_B - x_c}{c})^2} * \frac{1}{(1 + bt)^{\beta}} * (1 - d(1 - \cos(\phi))).$$

where the parameters are: (for the moment, we use the same parameters as at 6 GeV beam energy) $Q^{2}_{0} = 1.0 \text{ GeV2/c2}$ alpha = 2.5 b = -11.0 GeV2/c2 beta = 12.0 c = 0.2 d = 0.4M. Hattawy

Kinematic of the helium nuclei match our geometry

- Eg6 lacks statistics badly (only 3 pts)
- Main issue here is to have high rate
 - For this we need the ALERT detector

- We will explore the dynamic properties of the EMC effect with spectator detection
 - Allow to test many models that give equally good descriptions of inclusive EMC effect
 - Model predictions are very large effects that will be tested with high confidence!

Run group is forming

- Tagged EMC
- Nuclear DVCS
- $-\Phi$ production
- Neutron DVCS
- Tagged Form Factors
- Others? (https://clasweb.jlab.org/wiki/index.php/ALERT_Collaboration)

Beam time request to be refined

- Estimated to ~50 days
- (30 if BoNuS adopts ALERT instead of RTPC)