

Update on the simulation for ALERT

Whitney R. Armstrong

Argonne National Laboratory

February 25, 2016

Time-of-Flight Calculation

$$TOF = \frac{L}{c}\frac{1}{\beta}$$

L is the distance traversed by the particle, $\beta = p/E$, and c is the speed of light.

Time-of-Flight Calculation

$$TOF = \frac{L}{c}\frac{1}{\beta}$$

Plotting as a function of the relevant quantity p/q, where q is the particle charge.

Geant4 Simulation - scint_test

- Simulate only the scintillator (no other detectors)
- Understand material scintillation and light propagation
- Optimize for efficient trigger and high time resolution

Simple setup to examine scintillator response

- Thin scintillator strips with photon detectors at ends
- 10 mm \times 2 mm \times 40 cm
- Scintillator material only has one component (fast)
- Photons are detected and absorbed at both ends
- For each event the individual photon information recorded
- Event averages for each surface are also recorded (and mostly used for this analysis)

Geant4 Simulation

Geant4 Simulation

A quick check of the range

Vs.

Of course this is the expected behavior.

Thrown Events

Simple event generator for studying scintillator

- Events thrown from fixed z position: 10 cm upstream
- The x and y coordinates varied, uniformly covering a rectangle.
- Particles enter normal to scintillator surface

Will study in the future..

- Varying the angle of incidence
- The layer/particle topology

Time-of-Flight

Five layers of duel ended readout scintillator bars

$$T_i = TOF + d_i/a \qquad \qquad TOF = \frac{L}{c} \frac{1}{\beta}$$

 d_i is the distance from where the track entered the scintillator to photon detector *i*, *a* is the average light pulse propagation speed, *L* is the length traversed by the particle which was thrown at t=0, $\beta = p/E$, and c is the speed of light.

Bands lower to upper: p, d, $^3\mathrm{H}$ & $^3\mathrm{He},\,^4\mathrm{He}$

Δ

 $p = 200 \pm 25 \text{ MeV}$

T 1

Note these times are relative to the thrown time

Time-of-Flight : TDC Sums

Five layers of duel ended readout scintillator bars

Problem Single detector TOF information is smeared by the position along scintillator $T_i = TOF + d_i/a$ $\Sigma t = T_1 + T_2$ $L = d_1 + d_2$ $= 2TOF + d_1/a + d_2/a$ = 2TOF + L/a

Summing the time at both ends (i = 1 and 2) produces a result proportional to the **TOF plus a constant**, $\frac{L}{a}$.

Having photon detectors at both ends of the scintillator improves the TOF separation

Time-of-Flight : TDC Differences

Five layers of duel ended readout scintillator bars

$$\Delta t = T_1 - T_2$$

= $d_1/a - d_2/a$
= $(L - 2 d_2)/a$

$$d_2 = L - \frac{a}{2}\Delta t$$
$$d_1 = \frac{a}{2}\Delta t$$

Useful for rough position correlation.

Photon arrival times

Five layers of duel ended readout scintillator bars

Photons times \rightarrow discriminator trigger

Five layers of duel ended readout scintillator bars

Tile Scintillator

CLAS12 FT-hodo scintillator

4 sizes

- $(15 \times 15) \text{ mm}^2$
- $(30 \times 30) \text{ mm}^2$
- Thicknesses: 7 mm or 15 mm

${\sf Scint.} \ {\sf embedded} \ {\sf with} \ {\sf multiple} \ {\sf WLSFs}$

- WLSF glued into drilled holes
- $\approx 10 \text{ cm of WLSF}$ fused to clear fiber
- ≈ 5 m clear optical fibers coupled to SiPM

Scintillator Properties in Geant4

Scintillation yield by particle type

WLS Fiber Properties in Geant4

- Emission spectrum
- Absorption length spectrum

$$l_A(\lambda) = \frac{l_A(\lambda_0)}{1 - a(\lambda_0)} \Big[1 - a(\lambda) \Big]$$

where

$$l_A(\lambda_0 = 445nm) \simeq 3.5m$$

Scintillator Tile Simulation

$30 \times 30 \times 15 \text{ mm}^3$

- Poor time resolution...
- Many bounces inside scintillator until photon hits embeded WLSF
- Photons that are not shifted have very small acceptance

$15 \times 15 \times 7 \text{ mm}^3$ Much better time • Need try elongated

tile in the direction of the fibers

15 / 21

Scintillator Tile Simulation

Keep in mind that the TOF here is using an ideal (perfect) reference time. Also when plotted vs p/q, the ${}^{4}He$ will be degenerate with the deuteron here and the ${}^{3}He$ will be between the proton and deuteron.

Preliminary Design

17 / 21

Preliminary Design

Event Generator

Simulation Input

- Event generator for coherent and incoherent DVCS developed using approximate form from EG6 fit
- Can easily incorporate new process (just need the cross section)
- Default simulation is ep elastics this will be changed to $e^{-4}He$ elastics.
- Useful for studying acceptance and signal/background

Open to requests of the event generator for implementing new cross sections

Current Status

- Installed on the farm: /group/clas12-alert
- Output is easy-to-use root files
- https://clasweb.jlab.org/wiki/index.php/ALERT_Software
- Everything is on gitlab
- Not integrated with clas12 fast-MC

Recoil Scintillator Simulation Summary

- Full Geant4 simulation for studying recoil detector completed
- Event generator available for producing realistic input

Future Work

- Design scintillator system around recoil drift chamber.
- Study different geometry/scintillator combinations
- Explore possible geometry scenarios (e.g. long fibers to detect light farther away).
- Determine how to measure photons: PMTs, SiPM, APDs, ...
- Add reconstruction using recoil chamber and scintillator for more realistic analysis