DC Status for First Run

Krishna P. Adhikari Mississippi State University

> CLAS12 Workshop Feb 23, 2016

Many thanks to Mac Mestayer, Olga Cortes, Johann Goetz, Brook Byrd

Outline

- Installation, Commissioning not covered
- Data structures: banks, etc. not covered
- Simulating inefficiencies
 - intrinsic \rightarrow GEMC digitization
 - malfunction-related \rightarrow status tables
- Calibrations: raw time \rightarrow time \rightarrow distance
- Monitoring and track validation

Simulation of Efficiency & Resolution

- Three sources of inefficiency:
 - Intrinsic (applies to all wires),
 - Equipment malfunction-related (applies to specifc wires),
 - Background-related
- Worked with Maurizio to improve the digitization in GEMC
 - parameters added to CCDB
 - intrinsic inefficiency (distance dependent) is added in GEMC

The intrinsic inefficiency function:

$$f(X) = \frac{P_1}{(X^2 + P_2)^2} + \frac{P_3}{((1 - X) + P_4)^2}$$

where $X = doca/docaMax \& docaMax = 2 d_{layer}$

- Hit times generated by GEMC digitization routine will be smeared by a random number with position-dependent magnitudes as given by above intrinsic inefficiency function.
- Same inefficiency function and parameters are used by the track reconstruction software to form error matrix in the Kalman-filter.

Malfunction-related inefficiency: Status Database

- Equipment Status Tables
 - Fuse status (Sec, SL, Row, Col, Polarity) Good/Bad; notes
 - Signal Connection status (Sec, SL, STB, Connector, DCRB slot, DCRB connector) – Good/Bad; notes
 - HV-supply status (Crate, Slot, Channel) Good/Bad; notes
 - HV-distribution status (Sec, SL, Box, Quad, Doublet, Polarity, Pin) Good/Bad; notes
 - Individual dead wires (Sec, Layer, Wire) Good/Bad; notes
 - Individual hot wires (Sec, Layer, Wire) Good/Bad; notes
- Derived Channel/Wire Status Tables
- Work underway to create the tables

Conditions/Status Database

DC_calibration: Signal Cable Delay (T0)

- The measured drift time must be corrected for various delays before it can be used to get drift distance used in tracking.
- One of the major corrections is the signal cable delay (T0).
- Other time corrections are:
 - Correction for particle flight time (beta),
 - Correction for signal propagation time along sense wire,
 - Correction for time-walk,
 - Correction for beta-dependent smearing effect.

DC_calibration: Fitting Time Distributions for T0

Fit leading edge of time distribution to get the slope in order to obtain TO (the start time)

DC12 Calibration Status Krishna Adhikari

T0 vs Cable

Effect of TO Corrections

DC12 Calibration Status Krishna Adhikari

Effect of TO Corrections

timeresidual%doca 0.0 0.5 mm 0.04 0.02 meresidua 0.00 -0.02 -0.04 -0.5 mm -0.0 Residua -0.08 0.50 0.80 0.30 doca 0.08 0.06 0.5 mm → 0.04 0.02 timeresidual 0.00 -0.02 -0.04 -0.5 mm → -0.06 -0.08 **1**0.50 doca 0.80 **DC12** Calibration Status DOCA 12 5 mm Krishna Adhikari

Time-residual vs doca from un-calibrated & calibrated data using same $T \rightarrow X$ curve as GEMC !

Tmax estimation

- Knowledge of Tmax required in the time-todistance parameterization.
- Useful also in monitoring the detector condition and performance. For example, if the gas density changes, (Tmax-T0) will change.

DC_calibration: Fitting Time Distributions for Tmax

Fit trailing edges of time distribution to get the slope in order to obtain **Tmax** (the maximum drift time)

Estimating Tmax

Knowledge of TMax can be useful in DC condition & performance. For example, if the gas density changes, TMax will change. Fit function for Tmax:

 $f(t) = (1 - sigmoid) \times exponential + constant$ $f(t) = (1 - \frac{1}{1 + e^{A - Bt}}) \times e^{C - Dt} + E$

DC12 Calibration Status Krishna Adhikari

Tmax (raw) vs Cable

T0 Corrected Tmax

Tmax-T0 (sigm-mid) vs Cable

Time-to-distance function

In the procedure known as the "time-based" tracking, in order to reconstruct tracks more precisely, the time-to-distance function is used to convert the drift-times (after the various time corrections) to drift distances (CALCDOCA), which are then used to evaluate the "exact" hit positions.

trkDoca vs T0-corrected time

DC12 Monitoring

- List of items to be monitored is ready.
- ntuples allow real-time investigations
 - We can plot tracks, crosses, segments, hits and the correlations between them;
 - e.g. a plot of the #hits/cross vs. angle of the cross
- Some histograms and plots code validation and operational monitoring

DC12 Monitoring (Cosmic studies)

DC12 Monitoring (Cosmic studies)

DC12 Monitoring $\Delta T = T(wire1) - T(wire2)$

ΔT is useful to identify correlated noise originating from common electronic equipments.

DC12: Calibration Status Summary

DC Calibration:

- Intrinsic inefficiency
 - Inefficiency implemented in GEMC
 - Parameters yet to be calibrated
- Status Tables
 - keep time history of HV, lv, wire statusGUI's, Maps... ... underway....
- Time Correction
 - cable delays (T0, Tmax)DONE...
 - signal velocity along wire, particle TOF, time walk ... in progress
- Drift Velocity
 - parameters to determine DOCA as a function of time ... underway...

Monitoring:

• ntuple-maker, mouse-over web interface ready, plots defined, still need to select a subset for reconstruction validation.

Backup Slides

DC12 Cosmic Studies: Efficiency

Location of 2 superlayer crosses

High Voltage Distribution (each superlayer)

Crate Layout – Three Chambers

High Voltage Slot Assignments

CAEN Subslot to HVDB to HVTB Mapping

• example of functional mapping of HV, lv, sigcables \rightarrow wires

Signal Cable Routing

Low Voltage Power Distribution