2D Materials Design for Production of Cold Electrons

Richard G. Hennig, Joshua Paul, Michael Ashton, University of Florida

MPInterfaces - High throughput framework for 2D materials

VASPSol - Ab initio methods for solid/liquid interfaces

01010

GASP - Genetic algorithm and machine learning for structure predictions

Open source available at <u>https://github.com/henniggroup</u>

Data available at <u>http://materialsweb.org</u>

October 17-19, 2016 • Jefferson Lab

2D Materials Design for Production of Cold Electrons

Richard G. Hennig, Joshua Paul, Michael Ashton, University of Florida

Screen 2D materials for photocathodes

- Formation from layered bulk materials
- Semiconductors with small effective masses \bullet
- Promising family of group-IV monochalcogenides

rhennig@ufl.edu http://hennig.mse.ufl.edu

MPInterfaces - High throughput framework for 2D materials

MPInterfaces

0

sulfur 16

S

32.065

selenium **34**

Se

78.<mark>96</mark>

tellurium 52

Te 127.60

silicon 14

Si

ermanium **32**

Ge

72.64

tin **50**

Sn 118.710

lead **82**

Pb 207.2

phosphor 15

30.974

arsenic **33**

As

74.922

antinomy **51**

Sb 121.76

P3 Workshop October 17-19, 2016 • Jefferson Lab

5

bSe

SnTe

4.5

Lattice Constant (Å)

[©]PbTe

Acknowledgment

- MPInterfaces for novel 2D materials: K. Mathew, A. Singh, M. Ashton, J. Paul, J. Gabriel, H. Zhuang, M. Blonsky, M. Johannes, R. Ramanathan, R. Duan, Z. Ziyu
- VASPsol solvation model and nanocrystals: K. Mathew, J. Gabriel, C. Bealing
- GASP genetic algorithm and machine learning: **B. Revard**, W. Tipton, A. Yesupenko, B. Antonio, S. Honrao • Financial support by NSF-CAREER, NSF-SSI, NIST, DOE-EFRC
- Computational resources provided by HiPerGator@UF and NSF XSEDE

UF ... FLAMES

Florida Laboratory for Advanced Materials Engineering Simulations

010101

rhennig@ufl.edu http://hennig.mse.ufl.edu

2D Materials Beyond Graphene

Materials interfaces

- At the heart of many modern-day critical technologies
- Importance in key industrial segments: Microelectronics, chemical and energy industries

Single-layer or 2D materials

- Maximize their interfacial area
- Properties differ from 3D counterparts
- Potentially many more 2D materials awaiting discovery

Advantages for Photocathodes

- Atomically flat
- Low surface energy, hydrophobic, low reactivity
- Possibly weak interactions with substrates

http://newsroom.intel.com/docs/DOC-2032

Lauritsen et al., J. Catalysis 221 25 (2004)

P3 Workshop October 17-19, 2016 • Jefferson Lab

rhennig@ufl.edu http://hennig.mse.ufl.edu

Definition: Two-dimensional materials are crystals with structures that are periodic in two dimensions and have finite extension in the third dimension.

rhennig@ufl.edu http://hennig.mse.ufl.edu

Definition: Two-dimensional materials are crystals with structures that are periodic in two dimensions and have finite extension in the third dimension.

• 2D materials could consist of more than one atomic layer

Structure

BN

GaAs

MoS₂

SnSe

Bi₂Se₃

rhennig@ufl.edu http://hennig.mse.ufl.edu

Definition: Two-dimensional materials are crystals with structures that are periodic in two dimensions and have finite extension in the third dimension.

- 2D materials could consist of more than one atomic layer
- Electronic, magnetic, etc. properties for electronic and energy applications

Definition: Two-dimensional materials are crystals with structures that are periodic in two dimensions and have finite extension in the third dimension.

- 2D materials could consist of more than one atomic layer
- Substrates for synthesis and chemical properties for processing

Structure

• Electronic, magnetic, etc. properties for electronic and energy applications

Properties

Processing

Materials Informatics of 2D Materials

H. L. Zhuang and RGH, JOM 66, 366 (2014)

Materials Informatics of 2D Materials

Open source available at https://github.com/henniggroup

Information from DFT for photocathodes

• Band structures (gaps, effective masses)

A. K. Singh & RGH Appl. Phys. Lett. 105, 042103 (2014)

Information from DFT for photocathodes

• Band structures (gaps, effective masses)

A. K. Singh & RGH Appl. Phys. Lett. 105, 042103 (2014)

01010

01010

Information from DFT for photocathodes

- Band structures (gaps, effective masses)
- Workfunction and electron affinity

rhennig@ufl.edu http://hennig.mse.ufl.edu

Information from DFT for photocathodes

- Band structures (gaps, effective masses)
- Workfunction and electron affinity

rhennig@ufl.edu http://hennig.mse.ufl.edu

- Band structures (gaps, effective masses)
- Workfunction and electron affinity

01010

rhennig@ufl.edu http://hennig.mse.ufl.edu

Information from DFT for photocathodes

- Band structures (gaps, effective masses)
- Workfunction and electron affinity
- Quasiparticle energies (corrections to band structure)

2D SnS₂

rhennig@ufl.edu http://hennig.mse.ufl.edu

Information from DFT for photocathodes

• Band structures (gaps, effective masses)

2D SnS₂

- Workfunction and electron affinity
- Quasiparticle energies (corrections to band structure)
- Optical transitions and excitons

01010

rhennig@ufl.edu http://hennig.mse.ufl.edu

Information from DFT for photocathodes

- Band structures (gaps, effective masses)
- Workfunction and electron affinity
- Quasiparticle energies (corrections to band structure)
- Optical transitions and excitons
- Materials stability, Pourbaix diagrams

01010

http://hennig.mse.ufl.edu

October 17-19, 2016 • Jefferson Lab

Screening of 2D materials:

- 1. Identify layered bulk materials
- 2. Formation energy relative to bulk \Rightarrow 625 stable monolayer
- 3. Monolayers
- 4. Semiconductors
- 5. Semiconductors
- 6. Additional consideration: Dirac-cone 2D materials

- \Rightarrow 826 monolayer candidates
- \Rightarrow 282 semiconductors (0 < $E_{gap} \leq 3eV$)
- \Rightarrow 81 with direct gap
- \Rightarrow 201 with indirect gap
- \Rightarrow 21 with $m_{\text{effective}} < 1 m_{\text{e}}$

rhennig@ufl.edu http://hennig.mse.ufl.edu

- Many layered structures exist in materials that can be used to synthesize monolayers Identifying layered compounds using data from <u>MaterialsProject.org</u> using bond topology
- a) $Ta_{2}Te_{3}$ (mp-542634)

- d) Li-WCl₆ (mp-570512) c) $Ge_{2}Te_{5}As_{2}(mp-14791)$
- M. Ashton, J. Paul, S. Sinnott, RGH submitted (2016)

			a materialsproject.org		
Total Solar E	Ee Google Map FileMaker	WebDirect Mac Rumors	Canon & Nikon News	Canon Rumors Ca	nonWatch
van der Waals	2D Materials	File:Pyrene 3D	Publications »	Materials Project	Material mp-27
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ho	me About <del>-</del> .	Apps - Docum	entation <del>-</del> API
MATERIAL	ID:				
SiP	mp-2798				
HM:P 1 a=3.531Å b=20.567Å c=15.611Å α=90.000° β=90.000° γ=90.000°				Material Deta Final Magnetic -0.000 µB Magnetic Order Unknown Formation Ener -0.156 eV Energy Above F	ails Moment ring rgy / Atom Hull / Atom
	会交	台文		Density 2.08 g/cm ³	
	B P	BR		Decomposes To Stable	0
Structure Type:	Conventional Standard	Primitive Refined		Band Gap 1.740 eV	
Space Filling	Polyhedr	a		Space Group	)



M. Ashton, J. Paul, S. Sinnott, RGH submitted (2016)

• Search MaterialsProject Database for layered 3D structures with van der Waals gap







### Search MaterialsProject Database for layered 3D structures with van der Waals gap



### Identified 826 unique layered 3D bulk candidate materials for exfoliation.



M. Ashton, J. Paul, S. Sinnott, RGH submitted (2016)







### • Search MaterialsProject Database for layered 3D structures with van der Waals gap



### Identified 826 unique layered 3D bulk candidate materials for exfoliation.

### Identified 625 2D materials with energy below 150 meV/atom



M. Ashton, J. Paul, S. Sinnott, RGH submitted (2016)





## **Electronic Properties of 2D Materials**

- Identify 2D materials with PBE bandgap between 0 and 3 eV
- Among the 625 stable monolayers, 282 are semiconductors (about 46%)
  - > 201 materials with indirect gap
  - 81 materials with direct gap









## **Effective Electron Masses of 2D Materials**





http://hennig.mse.ufl.edu



Preliminary results for effective masses obtained with PBE functional





rhennig@ufl.edu http://hennig.mse.ufl.edu



Preliminary results for effective masses obtained with PBE functional

Band gap (eV)





## **Exotic Electronic Properties of 2D Materials**

### **2D** materials with zero gap

- Graphene
- TiNI
- Nb3IrS8
- HfSiTe
- ZrBr
- InBi
- SrSbSe2F
- NiP2
- YIC
- ZrGeTe
- YBrC
- ZrTe5
- HfTe5









rhennig@ufl.edu http://hennig.mse.ufl.edu

	-	
	-	
	-	
	_	
	_	
Ι		
Ι		
Γ		
	-	
Ι		
Ι		
Γ		
Ι		
1		
T		
	L	





## Website: <a href="https://materialsweb.org">https://materialsweb.org</a>



L01010

Florida Laboratory for Advanced Materials Engineering Simulations

101010: 010101( 101010: 010101( 101101(

rhennig@ufl.edu http://hennig.mse.ufl.edu







# Website: <a href="https://materialsweb.org">https://materialsweb.org</a>



101010: 0101010: 101010: 0101010: 101101

01010

Florida Laboratory for Advanced Materials Engineering Simulations



http://hennig.mse.ufl.edu





# Website: <a href="https://materialsweb.org">https://materialsweb.org</a>



101010: 010101( 101010: 010101(

10110

01010

101010

Florida Laboratory for Advanced Materials Engineering Simulations



http://hennig.mse.ufl.edu

### October 17-19, 2016 • Jefferson Lab

ð	>>	+	
al W	/F		
ok	)		



## **2D Materials Design for Production of Cold Electrons**

### Richard G. Hennig, Joshua Paul, Michael Ashton, University of Florida

### **MPInterfaces**

### High throughput framework for 2D materials



### **Screen 2D materials for photocathodes**

- Formation from layered bulk materials
- Semiconductors with small effective masses
- Promising family of group-IV monochalcogenides



rhennig@ufl.edu http://hennig.mse.ufl.edu

### Data available at <u>http://materialsweb.org</u>





