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Photocathode Metrics

Need

Particle accelerators and light sources such as x-ray Free Electron Lasers (FEL) make
severe demands on e-source in terms of J and ability to shape pulse. Some of the Metrics
of performance are at odds with each othera

a
† e.g., QE and εn,rms . See D.H. Dowell, J.F. Schmerge. “QE and Thermal Emittance...” Phys. Rev. ST Accel. Beams, 12(7), 074201, 2009.

Five metrics of photocathode performance emerge as particularly important for next
generation light sources (such as x-ray FEL’s):

1 Quantum Efficiency Number of e− emitted / number of ~ω absorbed→ big is good.
2 Emittance Tendency of e-beam to spread as beam propagates→ small is good.
3 Lifetime of photocathode before replacement / rejuvenation→ long is good.
4 Ruggedness or survivability in photoinjector† → tough is good.
5 Response Time of photocathode, affects bunch pulse shaping→ fast is good.

Cesium

All high QE photocathodes↔ semiconductors. All metrics concerned with e-transport
through bulk material + emission over (or through) surface barrier. Band bending, barriers,
and resonances require more than usual Heaviside transmission probability.
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Photocathode Materials

Desirable Photocathode Performance: Jpeak = 20 − 500 A/cm2, 〈J〉 ≈ 1 A/cm2, Minimize emittance

Charge per bunch: 0.1 - 1 nC. Pulse length: 1 - 50 ps. Pulse to pulse: > 5 ns. Area: 0.1 cm2

harmonic: change of λo = 1.06 µm to shorter λ using
ω-doubling crystals such that λ = λo/n.

Efficiency: conversion efficiency of crystals used for
frequency doubling

Temp Resp: temporal response time, or how long
photoexcited electrons take to come out

Ave P at cath: laser power deposited on cathode

Ave P Laser: Power of 1064 nm Nd:YAG before conversion

8760 hours: one year (metal photocathodes last longer)
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Property Units K2CsSb Cs2Te GaAs Cu Mg

harmonic − 2 4 2 4 4
Wavelength nm 532 266 532 266 266
Efficiency % 50 10 50 10 10

Starting QE % 8 5 5 1.4E-2 6.2E-2
Lifetime hrs 4 > 100 58 > 8760 > 8760

Temp Resp ps < 1 < 1 > 50 < 0.05 < 0.05
Vac tol − poor very good poor excellent excellent

Ave P at cath W/cm2 29.13 93.22 46.61 33293 7518
Ave P Laser W/cm2 58.26 932.20 93.22 332932 75178
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The Three Components of Photoemission

Absorption
...of light in bulk material and photo-excitation of e−

reflectivity R(ω) and penetration depth δ(ω)

ω-dependent dielectric constant: optical
parameters n and k

Transport
... of photo-excited e− to surface with scattering

electron energy E

scattering rates (relaxation times) τ(E):
scattering factor fλ

Emission
...probability of transport over/thru barrier

Metal: Chemical Potential µ Work Function Φ

(measured from Fermi level)
Semiconductor: barrier height Ea (measured
from conduction band minimum), band gap Eg

Escape cone θmax (or km in Moments model)

D E,Ea ,Eg ,F( )

Semiconductor

D E,µ,Φ,F( )

fλ cosθ,E( )

 !ω

θ

k

δ(ω)

R(ω)Metal
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Assumptions Behind The Three Step Model

The Moments Model makes the same five simplifications behind 3-step model
of Berglund and Spicera

1 photoexcited e− isotropically distributed;
2 only inelastic scattering events;
3 inelastic scattering↔ mean free path, depends only on electron’s energy;

l(E) =
~k(E)

m
τ(E) (1)

4 isotropic scattering
5 normal energy Ex = E cos2 θ of photoexcited e− > barrier height Vo with

P(E > Vo) = 1 (2)

This is the Heaviside Step Function emission probability.

aC.N. Berglund, and W.E. Spicer. “Photoemission Studies of Copper and Silver: Theory.” Physical Review 136(4A), A1030, 1964.
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Preparing for the Moments Approach

Phase Space distribution approach

Particles (like e−) are labeled by their position ~r and their momentum ~~k

Assume conditions ⊥ to ~J are uniform. The 6D phase space f (~r,~k) can therefore be
reduced to a 2D phase space in x and kx ≡ k, or f (x, k).

The phase space points are conserved: df /dt = 0, or

Boltzmann’s Transport Equation

df
dt

=
f (x + dx, k + dk, t + dt) − f (x, k, t)

dt
⇒

{
∂

∂t
+
~k
m

∂

∂x
+

F
~

∂

∂k

}
f (x, k, t) = 0 (3)

Integration over dk results in Continuity Equation; (∂k-term vanishes on BC)

∂

∂t

[
1

2π

∫ ∞

−∞

f (x, k, t)dk
]

= −
∂

∂x

[
1

2π

∫ ∞

−∞

(
~k
m

)
f (x, k, t)dk

]
(4)

∂

∂t
ρ (x, t) = −

∂

∂x
J (x, t) (5)

ρ(x, t)↔ 0th k−moment of f (x, k); J(x, t)↔ 1st k−moment of f (x, k)
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Defining the Transmission Probability

In the Quantum Mechanical version of the Continuity Equation,
density ρ and current density j become pure-state (particular k) operators;
time derivatives are commutators with the Hamiltonian Ĥ

∂tρ̂k(t) =
i
~

[
Ĥ, ρ̂k(t)

]
= −

~

2m
∂

∂x̂

{
k̂, ρ̂k(t)

}
= −

∂

∂x̂
ĵk (t) (6)

Pure state current density jk(x, t): Anti-commutator with k̂

jk(x, t) =
~

2m
〈x|

{
ρ̂k(t), k̂

}
|x〉 =

~

2mi

{
ψk
†∂xψk − ψk∂xψk

†
}

(7)

Transmission probability is ratio of current density for a given k

D(k) =
jtrans(k)

jincident(k)
(8)
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A Simple Barrier Model

Rectangular Barrier of height Vo = ~2k2
o/2m and width L

Drec(k) ≡

1 +

( k2
o

2k

) sinh
(
L
√

k2
o − k2

)
√

k2
o − k2


2
−1

(9)

Gamow Factor:

θ(k) = 2L
√

k2
o − k2 (10)

→ 2
∫ x+

x−
k(x) dx (11)

Kemble form of D(k):

D(k) ≈ 1/
{
1 + exp [θ(k)]

}
(12)

D(k > ko) oscillates. Oscillations?
Structure? “Simple” is not so simple.
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Tsu-Esaki-like Formula for Current Density

A general expression for Current Density composed of

A velocity: ~k/m

A weighting factor or supply function: f (k)

A probability of transmission past the barrier: D(k)

J(F,T) =
1

2π

∞∫
0

~k
m

D (k) f (k) dk (13)

Convert: k → E(k) = ~2k2/2m (parabolic relation)

J(F,T) =
1

2π~

∞∫
0

D (E) f (E) dE (14)

f (k) = supply function, from Fermi-Dirac Distribution (µ = Fermi level; β = 1/kBT)

f (k) =
2

2π2

∫ ∞

0

2πk⊥dk⊥
1 + exp

[
β(E + E⊥ − µ)

] =
m

πβ~2 ln
[
1 + eβ(µ−E)

]
(15)
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Recast QE as Moment of Distribution Function

Moments are integrals of kn
j with a distribution:

Mn

(
k̃j

)
= 1

(2π)3

∫
d~k

[
k̃n

j

]
× [E] × [T] × [A]

The Parts

Phase Space Element

Momentum component

Absorption (occupation)

Transport (scattering factor)

Emission (transmission prob)

d~k →
(

2m
~2

)3/2 ∫ ∞

0
E1/2dE

∫ π/2

0
sin θdθ

[k̃n
j ]→

{
2m
~2 Ẽ cos2 θ

}n/2

[A]→
{

fFD(E) (1 − fFD(E + ~ω))
Θ

(
~ω + E − Eg

)
[T]→ fλ(cos θ, p(E))

[E]→ D
{
(E + ~ω) cos2 θ

}
fFD is Fermi-Dirac distribution; Eg is band gap; Θ is Heaviside step function; k̃ and Ẽ indicates momentum / energy
moment calculated with / without ~ω; p is a ratio between the laser penetration depth δ and the mean free path vτ
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Transport and the effects of Scattering
The “Fatal” Approximation: Common approximation that scattering prevents emission

Good for big barriers (metals), less good for small barriers & semiconductors.
Important factor: Ratio of penetration depth to distance between scattering events

p(E) =
δ(ω)
l(E)

=
mδ (~ω)
~k (E) τ (E)

; τ−1
total =

∑
j
τ−1

j (16)

Fraction of photoexcited electrons surviving transport back to surface
δ governs how far laser light gets in; x/ cos θ governs how far electrons have to go to get out

fλ(cos θ, p) =

∫ ∞
0 exp

(
−

x
δ
−

x
l(E) cos θ

)
dx∫ ∞

0 exp
(
−

x
δ

)
dx

=
cos θ

cos θ + p(E)
(17)

Final states have to be allowed: semiconductors have a “magic window” where
e − e scattering (large energy loss) is forbidden and only e − p (small energy loss) occurs

Fraction surviving (modifies FD):
Fλ (y) =

∫ 1
cos θm

x fλ(x, p) dx

Cs3Sb-like (e − p): → p ≈ 0.36
δ = 27 nm; v/c = 0.8; τ = 31 fs

Cu-Like (e − e): → p ≈ 2.38
δ = 12.6 nm; v/c = 0.675; τ = 2.6 fs

Metal Semiconductor
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QE and Emittance In Terms of Moments

Quantum Efficiency depends on kz

kz = k cos θ is momentum component directed into barrier

QE = {1 − R (ω)}
M1(kz)

2 M1 (k)|D=1, fλ=1
∝

 (~ω − φ)2 metal(
~ω − Ea − Eg

)v
semia

(18)

normalized Emittance εn,rms depends on k⊥

Emittance εn,rms is area in phase space enclosing all (x, kx) of e− in a beam.

εn,rms = (~/mc)
√〈

x2〉 〈k2
x

〉
for rotationally symmetric uniform emission areas

k2
⊥ = k2

ρ + k2
ω ; ρ2

c = 2
〈
x2

〉
k⊥ along surface; ρc is radius of emission area

Reproduces Dowell-Schmerge formulab for εn,rms

εn,rms =
~

mc

(
ρc

2

) √
M2 (k⊥)

2M0 (k⊥)
≈
ρc

2

[
(~ω − φ)

3mc2

]1/2

(19)

aW.E. Spicer. “Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-antimony Compounds.” Phys. Rev., 112, 114, 1958
QE = B/[1 + g(E − Vg)−3/2]→ ν = 3/2. Moments Model recommends differently.

bD.H. Dowell, J.F. Schmerge. “QE and Thermal Emittance....” Phys. Rev. ST Accel. Beams, 12(7), 074201, 2009.
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Response Time and Scattering

No Scattering
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Scattering

Diffusion

Drift Diffusion
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Electron - Electron
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conductor
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Metals, e − e scattering is fatal to emission (shares energy)
so only unscattered electrons get to barrier

Semiconductors, e − p scattering changes E a small
amount, so few scatterings do not impede emission

Negative Electron Affinity: e− thermalize to bottom of
conduction band; can be emitted over an NEA surface
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Photoemission from Semiconductors

Semiconductor emission barrier is approximately triangular: Use Airy D4(E):

QE = (1 − R (ω))

∫ ~ω−Eg

Ea
EdE

∫ 1
√

Ea/E
xdxD∆

[
Ex2

]
fλ (x,E)

2
∫ ~ω−Eg

0
E

[∫ 1

0
dx

]
dE

(20)

D4(E) ≈
4[E(E − Ea)]1/2(

E1/2 + (E − Ea)1/2)2 → QE ≈
2Cs5

(1 + s2)(1 +
√

1 + s2)(s +
√

1 + s2)
(21)

where s2 ≡ (~ω − Eg − Ea)/Ea and C ≈ n(1 − R)/(1 + p) with n of order unity
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D4 (E): K.L. Jensen, JVSTB21, 1528 (2003); Forbes and Deane, Proc. Roy. Soc. London A (May 18, 2011).
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Airy Functions and the Transfer Matrix Approach

Plane-wave Transfer Matrix Approach

 A

 B  (x) = t(k)eikx + r(k)e�ikx

⇣n(x) =

✓
 n(x)
@x n(x)

◆
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⇣n�1(xn) ⌘ Ŝ (n) · ⇣n(xn)

✓
1
r

◆
=

(
NY

n=1
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aK.L. Jensen. “A quantum dipole....” J. Appl. Phys., 111, 054916, (2012)
K.L. Jensen, Electron Emission Physics (Academic Press, San Diego, CA (2007).
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Resonances

Crystal Structure And Current Are Inherently 3D

Great flexibility to treat arbitrary V(x), particularly for coatings / Graphene 

Use Airy TMA on potentials from DFT / Computational Physics
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Surfaces: Work Function

Treat Resonances, Multi-photon, And Band Bending / Bound States

V0

periodic Bloch amplitude

periodic crystal lattice free space

work function

uj~k (~r) = uj~k (~r + ~an)

uj~k (~r) e
i~k·~r ! ei

~k0·~r

crystal lattice interface
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Surfaces: Band Bending

Develop Airy TMA to find D(E)

Apply TMA-Zi methods to V(x) 
determined by computational 

materials methods

VBM

CBM

Fermi

After Fig. 1a in Hartmann, et al., 
“A diffusion model for ps 

electron bunches from NEA 
GaAs photocathodes” JAP86, 

2245 (1999).
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φ ≈ 0.1-0.8 eV for 
Fext ≈ 1-50 MV/m

≈ (1-10 eV/µm)2 

Accelerating field F
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Summary and Future

Develop computational model of emission for time-dependent surface
conditions; find contributions of scattered electrons; photo-assisted field
emission and multi-photon processes

Incorporate atomistic simulations (e.g. DFT) for m∗, n and k, V(x), EG,
Density of states, and supply function into nearly free electron Moments
based formalism to find QE and εn,rms for compositional variations,
heterostructures, accumulation regions.

Extend the atomistic simulations surface potential structure to a full 3D
potential representation; develop a scattering representation through the
well structure (transverse and parallel components of current at interface)

Jensen, Shabaev, Lambrakos, Finkenstadt, Moody, Transfer Matrix Methods, Photoemission, and Heterostructures pg 22 of 22


	Setting the Stage
	Metrics and Materials
	Basic Framework
	Emission Probability

	The Case for D(E) Evaluation
	The Moments-based Model
	``...But Does It Work?''
	Airy Function TMA

	Using Airy-Based D(E)
	Resonances
	Surfaces
	Conclusion


