Transfer Matrix Methods, Photoemission, and Heterostructures

K. L. Jensen¹, A. Shabaev², S. G. Lambrakos¹, Daniel Finkenstadt³, N. A. Moody⁴

¹MSTD, Naval Research Laboratory, Washington, DC ³George Mason University, Fairfax, VA ³United States Naval Academy, Annapolis, MD ⁴ISRD, Los Alamos National Laboratory, Los Alamos, NM

October 16, 2016

Photocathode Physics for Photoinjectors (P3)

Theory and Simulation

Metrics and Materials Basic Framework Emission Probability

Sections Outline

- Setting the Stage
 - Metrics and Materials
 - Basic Framework
 - Emission Probability
- The Case for D(E) Evaluation
 The Moments-based Model
 "...But Does It Work?"
 - Airy Function TMA
- 3 Using Airy-Based D(E)
 - Resonances
 - Surfaces
 - Conclusion

Metrics and Materials Basic Framework Emission Probability

PHOTOCATHODE METRICS

Need

Particle accelerators and light sources such as x-ray Free Electron Lasers (FEL) make severe demands on e-source in terms of J and ability to shape pulse. Some of the Metrics of performance are at odds with each other^a

a + e.g., QE and En.rms. See D.H. Dowell, J.F. Schmerge. "QE and Thermal Emittance..." Phys. Rev. ST Accel. Beams, 12(7), 074201, 2009.

Five metrics of photocathode performance emerge as particularly important for next generation light sources (such as x-ray FEL's):

- **Quantum Efficiency** Number of e^- emitted / number of $\hbar\omega$ absorbed \rightarrow big is good.
- 2 *Emittance* Tendency of *e*-beam to spread as beam propagates \rightarrow small is good.
- It is good. Lifetime of photocathode before replacement / rejuvenation \rightarrow long is good.
- **Organization Base of Second Secon**
- Solution \mathbb{E} **Response Time** of photocathode, affects bunch pulse shaping \rightarrow fast is good.

Cesium

All high QE photocathodes \leftrightarrow semiconductors. All metrics concerned with *e*-transport through bulk material + emission over (or through) surface barrier. Band bending, barriers, and resonances require more than usual Heaviside transmission probability.

Metrics and Materials Basic Framework Emission Probability

PHOTOCATHODE MATERIALS

Desirable Photocathode Performance: $J_{peak} = 20 - 500 \text{ A/cm}^2$, $\langle J \rangle \approx 1 \text{ A/cm}^2$, Minimize emittance

Charge per bunch: 0.1 - 1 nC. Pulse length: 1 - 50 ps. Pulse to pulse: > 5 ns. Area: 0.1 cm²

- harmonic: change of $\lambda_o = 1.06 \,\mu$ m to shorter λ using ω -doubling crystals such that $\lambda = \lambda_o/n$.
- Efficiency: conversion efficiency of crystals used for frequency doubling
- Temp Resp: temporal response time, or how long photoexcited electrons take to come out
- Ave P at cath: laser power deposited on cathode
- Ave P Laser: Power of 1064 nm Nd:YAG before conversion
- 8760 hours: one year (metal photocathodes last longer)

Property	Units	K ₂ CsSb	Cs ₂ Te	GaAs	Cu	Mg
harmonic	-	2	4	2	4	4
Wavelength	nm	532	266	532	266	266
Efficiency	%	50	10	50	10	10
Starting QE	%	8	5	5	1.4E-2	6.2E-2
Lifetime	hrs	4	> 100	58	> 8760	> 8760
Temp Resp	ps	< 1	< 1	> 50	< 0.05	< 0.05
Vac tol	-	poor	very good	poor	excellent	excellent
Ave P at cath	W/cm ²	29.13	93.22	46.61	33293	7518
Ave P Laser	W/cm ²	58.26	932.20	93.22	332932	75178

Metrics and Materials Basic Framework Emission Probability

THE THREE COMPONENTS OF PHOTOEMISSION

Absorption

- ... of light in bulk material and photo-excitation of e-
 - reflectivity $R(\omega)$ and penetration depth $\delta(\omega)$
 - ω-dependent dielectric constant: optical parameters n and k

Transport

... of photo-excited e^- to surface with scattering

- electron energy E
- scattering rates (relaxation times) τ(E): scattering factor f_λ

Emission

...probability of transport over/thru barrier

- Metal: Chemical Potential μ Work Function Φ (measured from Fermi level) Semiconductor: barrier height E_a (measured from conduction band minimum), band gap E_g
- Escape cone θ_{max} (or k_m in Moments model)

ASSUMPTIONS BEHIND THE THREE STEP MODEL

The Moments Model makes the same five simplifications behind 3-step model of Berglund and Spicer^a

- photoexcited e^- isotropically distributed;
- only inelastic scattering events;
- (a) inelastic scattering \leftrightarrow mean free path, depends only on electron's energy;

$$l(E) = \frac{\hbar k(E)}{m} \tau(E) \tag{1}$$

isotropic scattering

(a) normal energy $E_x = E \cos^2 \theta$ of photoexcited $e^- >$ barrier height V_o with

$$P(E > V_o) = 1 \tag{2}$$

This is the Heaviside Step Function emission probability.

^aC.N. Berglund, and W.E. Spicer. "Photoemission Studies of Copper and Silver: Theory." Physical Review 136(4A), A1030, 1964.

Metrics and Materials Basic Framework Emission Probability

PREPARING FOR THE MOMENTS APPROACH

Phase Space distribution approach

- Particles (like e^-) are labeled by their position \vec{r} and their momentum $\hbar \vec{k}$
- Assume conditions \perp to \vec{J} are uniform. The 6D phase space $f(\vec{r}, \vec{k})$ can therefore be reduced to a 2D phase space in *x* and $k_x \equiv k$, or f(x, k).
- The phase space points are conserved: df/dt = 0, or

Boltzmann's Transport Equation

$$\frac{df}{dt} = \frac{f\left(x + dx, k + dk, t + dt\right) - f(x, k, t)}{dt} \Rightarrow \left\{\frac{\partial}{\partial t} + \frac{\hbar k}{m}\frac{\partial}{\partial x} + \frac{F}{\hbar}\frac{\partial}{\partial k}\right\}f(x, k, t) = 0$$
(3)

Integration over dk results in Continuity Equation; (∂_k -term vanishes on BC)

$$\frac{\partial}{\partial t} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x,k,t) dk \right] = -\frac{\partial}{\partial x} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{\hbar k}{m} \right) f(x,k,t) dk \right]$$
(4)

$$\frac{\partial}{\partial t}\rho(x,t) = -\frac{\partial}{\partial x}J(x,t)$$
(5)

 $\rho(x, t) \leftrightarrow 0^{th} k$ -moment of f(x, k);

 $J(x,t) \leftrightarrow 1^{st}$ k-moment of f(x,k)

Metrics and Materials Basic Framework Emission Probability

DEFINING THE TRANSMISSION PROBABILITY

 In the Quantum Mechanical version of the Continuity Equation, density ρ and current density j become pure-state (particular k) operators; time derivatives are commutators with the Hamiltonian Ĥ

$$\partial_t \hat{\rho}_k(t) = \frac{i}{\hbar} \left[\hat{H}, \hat{\rho}_k(t) \right] = -\frac{\hbar}{2m} \frac{\partial}{\partial \hat{x}} \left\{ \hat{k}, \hat{\rho}_k(t) \right\} = -\frac{\partial}{\partial \hat{x}} \hat{j}_k(t)$$
(6)

• Pure state current density $j_k(x, t)$: Anti-commutator with \hat{k}

$$j_{k}(x,t) = \frac{\hbar}{2m} \langle x | \left\{ \hat{\rho}_{k}(t), \hat{k} \right\} | x \rangle = \frac{\hbar}{2mi} \left\{ \psi_{k}^{\dagger} \partial_{x} \psi_{k} - \psi_{k} \partial_{x} \psi_{k}^{\dagger} \right\}$$
(7)

Transmission probability is ratio of current density for a given k

$$D(k) = \frac{j_{trans}(k)}{j_{incident}(k)}$$

(8)

Metrics and Materials Basic Framework Emission Probability

A SIMPLE BARRIER MODEL

Rectangular Barrier of height $V_o = \hbar^2 k_o^2/2m$ and width L

$$D_{rec}(k) \equiv \left\{ 1 + \left[\left(\frac{k_o^2}{2k} \right) \frac{\sinh\left(L \sqrt{k_o^2 - k^2} \right)}{\sqrt{k_o^2 - k^2}} \right]^2 \right\}^{-1}$$
(9)

• Gamow Factor:

$$\theta(k) = 2L \sqrt{k_o^2 - k^2}$$
(10)
$$\rightarrow 2 \int_{x_-}^{x_+} k(x) dx$$
(11)

• Kemble form of D(k):

$$D(k) \approx 1/\{1 + \exp\left[\frac{\theta(k)}{2}\right]\}$$
(12)

 D(k > k_o) oscillates. Oscillations? Structure? "Simple" is not so simple.

TSU-ESAKI-LIKE FORMULA FOR CURRENT DENSITY

A general expression for Current Density composed of

- A velocity: $\hbar k/m$
- A weighting factor or supply function: *f*(*k*)
- A probability of transmission past the barrier: D(k)

$$J(F,T) = \frac{1}{2\pi} \int_{0}^{\infty} \frac{\hbar k}{m} D(k) f(k) dk$$
(13)

Convert: $k \rightarrow E(k) = \hbar^2 k^2 / 2m$ (parabolic relation)

$$J(F,T) = \frac{1}{2\pi\hbar} \int_{0}^{\infty} D(E) f(E) dE$$
 (14)

f(k) = supply function, from Fermi-Dirac Distribution ($\mu =$ Fermi level; $\beta = 1/k_BT$)

$$f(k) = \frac{2}{2\pi^2} \int_0^\infty \frac{2\pi k_\perp dk_\perp}{1 + \exp\left[\beta(E + E_\perp - \mu)\right]} = \frac{m}{\pi\beta\hbar^2} \ln\left[1 + e^{\beta(\mu - E)}\right]$$
(15)

he Moments-based Model ...But Does It Work?" .iry Function TMA

Sections Outline

Setting the Stage

- Metrics and Materials
- Basic Framework
- Emission Probability
- The Case for D(E) Evaluation
 The Moments-based Model
 - "...But Does It Work?"
 - Airy Function TMA

3 Using Airy-Based D(E)

- Resonances
- Surfaces
- Conclusion

The Moments-based Model "...But Does It Work?" Airy Function TMA

RECAST QE AS MOMENT OF DISTRIBUTION FUNCTION

Moments are integrals of k_i^n with a distribution:

$$M_n\left(\tilde{k}_j\right) = \frac{1}{(2\pi)^3} \int d\vec{k} \left[\tilde{k}_j^n\right] \times [E] \times [T] \times [A]$$

The Parts

- Phase Space Element
- Momentum component
- Absorption (occupation)
- Transport (scattering factor)
- Emission (transmission prob)

$$\begin{aligned} d\vec{k} &\to \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty E^{1/2} dE \int_0^{\pi/2} \sin\theta d\theta \\ [\tilde{k}_j^n] &\to \left\{\frac{2m}{\hbar^2} \tilde{E} \cos^2\theta\right\}^{n/2} \\ [A] &\to \left\{\begin{array}{c} f_{FD}(E) \left(1 - f_{FD}(E + \hbar\omega)\right) \\ \Theta\left(\hbar\omega + E - E_g\right) \end{array} \right. \\ [T] &\to f_\lambda(\cos\theta, p(E)) \\ [E] &\to D\left\{(E + \hbar\omega)\cos^2\theta\right\} \end{aligned}$$

 f_{FD} is Fermi-Dirac distribution; E_g is band gap; Θ is Heaviside step function; \tilde{k} and \tilde{E} indicates momentum / energy moment calculated with / without $\hbar\omega$; p is a ratio between the laser penetration depth δ and the mean free path $v\tau$

TRANSPORT AND THE EFFECTS OF SCATTERING

The "Fatal" Approximation: Common approximation that scattering prevents emission

- Good for big barriers (metals), less good for small barriers & semiconductors.
- Important factor: Ratio of penetration depth to distance between scattering events

$$p(E) = \frac{\delta(\omega)}{l(E)} = \frac{m\delta(\hbar\omega)}{\hbar k(E)\tau(E)}; \quad \tau_{total}^{-1} = \sum_{j} \tau_{j}^{-1}$$
(16)

Fraction of photoexcited electrons surviving transport back to surface

 δ governs how far laser light gets in; $x/\cos\theta$ governs how far electrons have to go to get out

$$f_{\lambda}(\cos\theta, p) = \frac{\int_{0}^{\infty} \exp\left(-\frac{x}{\delta} - \frac{x}{l(E)\cos\theta}\right) dx}{\int_{0}^{\infty} \exp\left(-\frac{x}{\delta}\right) dx} = \frac{\cos\theta}{\cos\theta + p(E)}$$
(17)

- Final states have to be allowed: semiconductors have a "magic window" where e - e scattering (large energy loss) is forbidden and only e - p (small energy loss) occurs
- Fraction surviving (modifies FD): $F_{\lambda}(y) = \int_{\cos \theta_m}^{1} x f_{\lambda}(x, p) dx$
- Cs₃Sb-like (e p): $\rightarrow p \approx 0.36$ $\delta = 27$ nm; v/c = 0.8; $\tau = 31$ fs
- Cu-Like (e − e): → p ≈ 2.38 δ = 12.6 nm; v/c = 0.675; τ = 2.6 fs

QE AND EMITTANCE IN TERMS OF MOMENTS

Quantum Efficiency depends on k_z

• $k_z = k \cos \theta$ is momentum component directed into barrier

$$QE = \{1 - R(\omega)\} \frac{M_1(k_z)}{2 M_1(k)|_{D=1, f_{\lambda}=1}} \propto \begin{cases} (\hbar\omega - \phi)^2 & metal\\ (\hbar\omega - E_a - E_g)^v & semi^a \end{cases}$$
(18)

normalized Emittance $\varepsilon_{n,rms}$ depends on k_{\perp}

- Emittance $\varepsilon_{n,rms}$ is area in phase space enclosing all (x, k_x) of e^- in a beam. $\varepsilon_{n,rms} = (\hbar/mc) \sqrt{\langle x^2 \rangle \langle k_x^2 \rangle}$ for rotationally symmetric uniform emission areas $k_{\perp}^2 = k_{\rho}^2 + k_{\omega}^2$; $\rho_c^2 = 2 \langle x^2 \rangle$ k_{\perp} along surface; ρ_c is radius of emission area
- Reproduces Dowell-Schmerge formula^b for $\varepsilon_{n,rms}$

$$\varepsilon_{n,rms} = \frac{\hbar}{mc} \left(\frac{\rho_c}{2}\right) \sqrt{\frac{M_2(k_\perp)}{2M_0(k_\perp)}} \approx \frac{\rho_c}{2} \left[\frac{(\hbar\omega - \phi)}{3mc^2}\right]^{1/2}$$
(19)

^aW.E. Spicer. "Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-antimony Compounds." Phys. Rev., **112**, 114, 1958 $QE = B/[1 + g(E - V_g)^{-3/2}] \rightarrow v = 3/2$. Moments Model recommends differently. ^bD.H. Dowell, J.F. Schmerge. "QE and Thermal Emittance..." Phys. Rev. ST Accel. Beams, **12**(7), 074201, 2009.

The Moments-based Model "...But Does It Work?" Airy Function TMA

Response Time and Scattering

- Metals, e e scattering is fatal to emission (shares energy) so only unscattered electrons get to barrier
- Semiconductors, e p scattering changes E a small amount, so few scatterings do not impede emission
- Negative Electron Affinity: e⁻ thermalize to bottom of conduction band; can be emitted over an NEA surface

The Moments-based Model "...But Does It Work?" Airy Function TMA

PHOTOEMISSION FROM SEMICONDUCTORS

Semiconductor emission barrier is approximately triangular: Use Airy $D_{\triangle}(E)$:

$$QE = (1 - R(\omega)) \frac{\int_{E_a}^{\hbar\omega - E_g} EdE \int_{\sqrt{E_a/E}}^{1} x dx D_{\Delta} \left[Ex^2 \right] f_{\lambda}(x, E)}{2 \int_{0}^{\hbar\omega - E_g} E \left[\int_{0}^{1} dx \right] dE}$$
(20)

$$D_{\Delta}(E) \approx \frac{4[E(E-E_a)]^{1/2}}{(E^{1/2} + (E-E_a)^{1/2})^2} \to QE \approx \frac{2Cs^5}{(1+s^2)(1+\sqrt{1+s^2})(s+\sqrt{1+s^2})}$$
(21)

where $s^2 \equiv (\hbar \omega - E_g - E_a)/E_a$ and $C \approx n(1-R)/(1+p)$ with *n* of order unity

D_△(E): K.L. Jensen, JVSTB21, 1528 (2003); Forbes and Deane, Proc. Roy. Soc. London A (May 18, 2011).

The Moments-based Model "...But Does It Work?" Airy Function TMA

AIRY FUNCTIONS AND THE TRANSFER MATRIX APPROACH

• Plane-wave Transfer Matrix Approach

Airy based Transfer Matrix Approach^a

S-matrix Assembly

$$\begin{split} D(E_k) &= \frac{j_{trans}}{j_{inc}} \sim |t(k)|^2\\ \zeta_{n-1}(x_n) &\equiv \hat{S}\left(n\right) \cdot \zeta_n(x_n)\\ \left(\begin{array}{c}1\\r\end{array}\right) &= \left\{\prod_{n=1}^N \hat{S}(n)\right\} \left(\begin{array}{c}t\\0\end{array}\right) \Rightarrow t(k) &= \left\{\left[\prod_{n=1}^N \hat{S}(n)\right]_{1,1}\right\}^{-1} \end{split}$$

^aK.L. Jensen. "A quantum dipole...." J. Appl. Phys., 111, 054916, (2012) K.L. Jensen, *Electron Emission Physics* (Academic Press, San Diego, CA (2007).

Resonances Surfaces Conclusion

Sections Outline

Setting the Stage

- Metrics and Materials
- Basic Framework
- Emission Probability
- The Case for D(E) Evaluation
 The Moments-based Model
 "...But Does It Work?"
 - Airy Function TMA
- 3 Using Airy-Based D(E)
 - Resonances
 - Surfaces
 - Conclusion

Resonances Surfaces Conclusion

Resonances

Crystal Structure And Current Are Inherently 3D

Great flexibility to treat arbitrary V(x), particularly for coatings / Graphene Use Airy TMA on potentials from DFT / Computational Physics

Resonances Surfaces Conclusion

SURFACES: WORK FUNCTION

Treat Resonances, Multi-photon, And Band Bending / Bound States

Resonances Surfaces Conclusion

SURFACES: BAND BENDING

Develop Airy TMA to find D(E)

SUMMARY AND FUTURE

- Develop computational model of emission for time-dependent surface conditions; find contributions of scattered electrons; photo-assisted field emission and multi-photon processes
- Incorporate atomistic simulations (e.g. DFT) for m^* , n and k, V(x), E_G , Density of states, and supply function into nearly free electron Moments based formalism to find QE and $\varepsilon_{n,rms}$ for compositional variations, heterostructures, accumulation regions.
- Extend the atomistic simulations surface potential structure to a full 3D potential representation; develop a scattering representation through the well structure (transverse and parallel components of current at interface)