

www.scitech.ac.uk

Surface Characterisation and Preparation of Copper Photocathodes

S. Mistry[#], M. Cropper, Department of Physics, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK; R. Valizadeh, B.L. Militsyn, L.B. Jones, A.N. Hannah and T.C.Q. Noakes, STFC ASTeC, Daresbury, Warrington, Cheshire, WA4 4AD

sonal.mistry@stfc.ac.uk

0 10 20 30 40 50 60 70 80 90 100 60 60 60.4 60.4 60 70.1 Copper Content (%) 45 min sputter 68.4	7 0.00 31.53 6.26 remove the thick 2 6 0.00 29.84 6.60 Cu ₂ O layer.	2500 45 min Ar ⁺ sputter 60 min Ar ⁺ sputter 15 min sputter	55.4444.561.0763.6736.331.03
The QE is shown to increase with reduction of surface contaminants. Though the oxide was reduced down to trace levels, carbon persisted. The thick carbonaceous layer, though reducing with each cycle of sputtering is perhaps also mixing into the surface.	A Comparison of the Rel. QE yields for Cu samples Cu 2p (%) O 1s(%) C 1s(%) QE 01_copper 70.16 0.00 29.841 6.6	50 2000 15	69.83 30.17 1.21 74.70 25.27 1.08 72.27 27.73 1.10
03_COPPER <i>Ex-situ</i> Ar plasma treatment 15 minute Ar⁺ sputtering at 2 keV 	02_copper69.8330.170.001.203_copper100.000.000.005.0	 <i>Ex-situ</i> Ar plasma treatment Heating to 400°C 	04_copper
In place of O plasma, Ar plasma was used to reduce hydrocarbon contaminants. XPS data would suggest that as well as reducing carbon contamination, Ar plasma also reduces CuO (as received surface) to Cu metal. Ar plasma followed by a single sputter cycle is sufficient to reduce oxygen and carbon contamination to trace levels, producing the cleanest Cu metal surface of the 4 preparation methods described.	04_copper 75.168.2116.639.3 04_copper 75.168.2116.639.3 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 100.00 5.01 14.6 14.6 16.6 100.00 14.6 14.6 100.00 100.00 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6	This process was used to se obtainable without Ar ⁺ sput a factor of 3 improvement i a factor of 3 improvement i a sof Cu 2p, O 1s and C 1s (shown below) show that ver tment. So, what is the cause behind the increased QE? topographical changes to the Cu surface which serve the Cp regions $\frac{100}{9} \frac{100}{1300} \frac{4r \text{ plasma treated}}{1400 \text{ or } 2 \text{ hr}} \frac{1200}{9} \frac{1100}{9} \frac{1100}{9$	e if a clean surface was ttering. With respect to QE, s observed. ry little chemical change One possible explanation is to enhance the extracted Overlay of C 1s regions
300 300 200 100 30.5 30.5 30.5 30.5 Kinetic Energy (eV) 300 30.5 30.5 31.0 31.5 Kinetic Energy (eV)	1 x10 ⁴ 1 x10 ⁴ 1 x10 ⁴ 960 950 Binding Energy (eV)	900 940 930 930 930 930 930 930 930 93	295 290 285 280 Binding Energy (eV)
Conclusions and Further Investigations Acknowledgements			
 <i>Ex-situ</i> Ar plasma followed by <i>in-situ</i> heating to 400°C (04_copper) produced the <i>Ex-situ</i> Ar plasma followed by Ar+ sputtering (03_copper) produced the c With Ar+ sputter techniques, there seems to be a correlation between su In the case of 04_copper, the insignificant changes in surface chemistry s for the factor of 3 increase in QE Absolute QE measurements have not been possible due to potential space investigations in the QE measurement methodology is required Future studies will investigate how the topography of Cu surfaces vary w Microscopy. These same preparation procedures will be employed on ot 	ced the highest QE eanest surface face chemistry and QE uggest that heating had produced topographical chang e charge limitation effects and possibility of ion currer ith Ar ⁺ sputtering, plasma treatment and heating using her metals such as Nb and compared with Cu	ges which might account nt, therefore further g <i>in-situ</i> Atomic Force	owledge Loughborough Uni their nal's PhD study. The work is y funded by the European 3.

