

# A Brief Overview of the R&D Efforts towards High Quantum Efficiency and High Polarization Photocathodes

S. Zhang, on behalf of: W. Liu<sup>1</sup>, M. Stutzman<sup>1</sup>, M. Poelker<sup>1</sup>, Y. Qiao<sup>2</sup>, W. Lu<sup>2</sup>, and A. Moy<sup>2</sup>

> <sup>1</sup>Thomas Jefferson National Accelerator Facility <sup>2</sup>SVT Associates

Photocathode Physics for Photoinjectors (P3) 2016 October 17, 2016, JLab, Newport News, VA, USA







#### Motivation

Polarized Photocathode R&D, highlights

□ Summary & Future development







## **Motivation Behind Intense Polari.** e<sup>-</sup> Sources

- □ Research subjects require polar. e<sup>-</sup>
  Spin observables ⇒ unique insights in studying
  - fundamental symmetries/interactions
  - particle properties & hadron structure
  - *Spin experiments* → understanding of
    - nuclear reaction dynamics
    - structure of hadron-nucleon many body systems

# High Polar. e<sup>-</sup> beams at mA level will enable new capabilities & new physics experiments!





# High Current Pol. e<sup>-</sup> /e<sup>+</sup> Accelerators



MESA: CW beam 1mA (80% pol.), 10mA (un-pol.), 100~150MeV, 2 beam modes: EB & ER



https://www.youtube.com/watch?v=RrfiGatx9\_4&list=PLB22EC2B38A982F06





BNL eRHIC: CW beam 50~250mA (80% pol.)/18GeV 5.3C/bunch





# **Existing Polarized Photocathodes**

- High Pol. Satisfies most physics experiment
- But low QE only supporting ~ uA sustained beam delivery

| Material / Structure       | P (%) | QE (%) |
|----------------------------|-------|--------|
| Bulk GaAs                  | 35    | 10     |
| GaAsSb/AlGaAsP             | 75    | / 0.3  |
| GaAs/GaAsP                 | 92    | 1.2    |
| GaAs/GaAsP                 | 92    | 1.6    |
| InGaAs/AlGaAs              | 77    | 0.7    |
| AlInGaAs/GaAs              | 91    | 0.5    |
| AlInGaAs/AlGaAs (with DBR) | 92    | 0.85   |
| AlInGaAs/GaAsP (with DBR)  | 92    | 0.6/   |





# **QE Really Matters**

- Enough laser power?
   limitation: dissipation & heating., Cs evaporation, vacuum deterioration,....
- Cooling? complicated with HV

High polar. & ~ 10%QE desired: simplify gun design, reduce laser power, prolong operating lifetime





#### **A solution: Distributed Bragg Reflector**

S. ZHANG, NIMA631, 22 (2011)





# **Supertlattice Photocathodes**





Pol ~ 85% @ 780 nm (1.59 eV)





# **Benefits of DBR**

- DBR photocathode : absorpt. in GaAs/GaAsP SL >20%
   Less light needed ⇒ less heat deposited
- F-P can be formed btw top layer & DBR







#### Surface Reflection of DBR



GaAsP/AIAsP

12 paired layers: highest reflection ~93.2%

More layers, higher reflection, but more challenging

DBR Surface reflection vs. numbers of paired layers (n)





# **Fabrication of Photocathodes**

• Material deposition systems: MBE PLD, ALD, PECVD, ICP

Established know-how: 8 Applications Laboratory MBE systems producing world class epitaxial growth, feeding requirements back to equipment designers

• Complete semiconductor material characterization facility: HR-XRD, FTIR, Hall, Low-temp probe station, Semiconductor parameter analyzer, ellipsometer.

• Device Fabrication



Dual Oxide - Nitride MBE





# **Structure of Photocathodes**

| GaAs                                        | 5 nm                    | p=5E19 cm <sup>-3</sup> |                                                     | GaAs                             | 5 nm                    | p=5E19 cm <sup>-3</sup> |
|---------------------------------------------|-------------------------|-------------------------|-----------------------------------------------------|----------------------------------|-------------------------|-------------------------|
| GaAs/GaAsP<br>SL                            | (3.8/2.8 nm)<br>×14     | p=5E17 cm <sup>-3</sup> |                                                     | GaAs/GaAsP<br>SL                 | (3.8/2.8 nm)<br>×14     | p=5E17 cm <sup>-3</sup> |
| GaAsP <sub>0.35</sub> 2750 nm               | p=5E18 cm <sup>-3</sup> |                         | GaAsP <sub>0.35</sub> spacer                        | 750 nm                           | p=5E18 cm <sup>-3</sup> |                         |
|                                             |                         | (                       | GaAsP <sub>0.35</sub> / AlAsP <sub>0.4</sub><br>DBR | (54/64 nm)<br>×12                | p=5E18 cm <sup>-3</sup> |                         |
|                                             |                         |                         | GaAsP <sub>0.35</sub>                               | 2000 nm                          | p=5E18 cm <sup>-3</sup> |                         |
| Graded $GaAsP_x$<br>(x = 0~0.35)            | 5000 nm                 | p=5E18 cm <sup>-3</sup> |                                                     | Graded $GaAsP_x$<br>(x = 0~0.35) | 5000 nm                 | p=5E18 cm <sup>-3</sup> |
| GaAs buffer                                 | 200 nm                  | p=2E18 cm <sup>-3</sup> |                                                     | GaAs buffer                      | 200 nm                  | p=2E18 cm <sup>-3</sup> |
| p-GaAs substrate (p>1E18 cm <sup>-3</sup> ) |                         |                         | p-GaAs substrate (p>1E18 cm <sup>-3</sup> )         |                                  |                         |                         |

#### Key design consideration: Optical path length

- Layer thickness, and
- Refractive index/Phosphorus content





# **Calculation/Prediction**

Absorpt: 21.03% QE~ 6.4%, Enhancement ~7.4 @ 776 nm





S. ZHANG, P3 Workshop 2016, Newport News, VA



#### **Experimental Apparatus-Mott**









#### **Experimental Results**

- non-DBR: QE ~ 0.89%, Pol ~ 92% @ 776 nm:
  - DBR: Pol. ~ 84%, QE ~ 6.4%, Enhancement: ~7.2





S. ZHANG, P3 Workshop 20:6, Newport News, VA



#### **Experimental Results**





S. ZHANG, P3 Workshop 2016, Newport News, VA



# **Performance of Photocathodes**

- Accurate modeling helps
- Precise control over many layers the real challenge!

| Cathode                                                                   | Ref.          | P(%) | QE (%) | FOM* |
|---------------------------------------------------------------------------|---------------|------|--------|------|
| GaAs/GaAsP <sub>0.36</sub> (non-DBR)                                      | SLAC/SVT      | 86   | 1.2    | 0.89 |
| GaAs/GaAsP <sub>0.38</sub> (non-DBR)                                      | Nagoya        | 92   | 1.6    | 1.35 |
| Al <sub>0.19</sub> In <sub>0.2</sub> GaAs/Al <sub>0.4</sub> GaAs<br>(DBR) | St. Peterburg | 92   | 0.85   | 0.72 |
| GaAs/GaAsP <sub>0.35</sub> ( DBR)                                         | JLab/SVT      | 84   | 6.4    | 4.52 |

\* Figures of Merit=P<sup>2</sup>\*QE





# **Results back in 2015**

• Significant improvement in QE achieved!





S. ZHANG, P3 Workshop 2016, Newport News, VA



# GaAs/GaAsP:Sb Photocathode

• Different exp. conditions explored, relatively low QE & Polar.







# Summary

- Dramatic QE enhancement ~ 7x, polarization ~ 84% achieved with Strained DBR GaAs/GaAsP SL photocathodes
- DBR photocathodes will be used to produce high current polarized electron beams in UITF/CEBAF
- Further effort to tune the wavelength and increase QE peak is underway.
- Simulation and new polarized photocathode R&D have been proposed

#### Also like to hear ideas from you!



